Effects of moisture and temperature on NO_x and N₂O gas emissions from bovine urine applied to soil cores

S. Khan, T. Clough, K.M. Goh, R.R. Sherlock.

Agriculture and Life Science Division, Soil and Physical Sciences Group, P.O. Box 84, Lincoln University, Canterbury, 7647, New Zealand

Introduction

Nitrous oxide (N₂O) and $(NO_{v} = NO + NO_{s})$ are produced in pasture soils by both biotic and abiotic processes.

These processes are influenced by environmental, physical and chemical factors, in particular soil moisture, temperature and substrate supply.

Objective

The main objective was to obtain a better understanding of the processes and mechanisms involved in the release of NO₂ and N₂O following cow urine deposition to soils at different WFPS and temperature levels.

Experimental Procedure

A laboratory experiment was conducted in which cow urine at 500 kg N ha⁻¹, was applied to 180 re-packed soil cores, with four moisture and three temperature treatments. The four moisture treatments were 11, 36, 61 and 87% of the water-filled pore space (WFPS) and temperature treatments were 5°C, 15°C and 22°C. The cores were replicated thrice in a randomized complete block design. Five destructive samplings of the cores for soil inorganic-N (NH_4^+, NO_3^-, NO_2^-) were conducted, at weekly intervals. Gas sampling for NO, and N₀ was conducted periodically for 5 weeks.

Results

- Soil NH, +-N concentration decreased faster over time as soil temperature increased. However, no significant relationship was observed between WFPS and NH, +-N concentrations (Fig.1a).
- There was a significant interaction between WFPS and temperature on soil NO₂⁻ -N and NO₂⁻ -N concentrations (P < 0.01; Fig. 1b & 1c).
- The NO-N fluxes were significantly affected by both temperature and WFPS treatments (P < 0.01; Fig. 2a). Maximum cumulative NO-N flux (0.07%) as a percentage of urine-N applied was observed at 22°C and 36% WFPS treatments.
- When the net NO-N flux, expressed as a percentage of the net NH⁺-N depletion rate, was plotted against the mean soil H⁺ concentration, a strong linear relationship was demonstrated ($r^2 = 0.91$; Fig. 3).
- The N₂O-N fluxes were significantly affected by both temperature and WFPS treatments (P < 0.01; Fig. 2b).
- The maximum cumulative N₂O-N fluxes as a percentage of urine-N applied were significantly affected by WFPS (P < 0.01) but not by temperature and reached a maximum of 5.5% at 87% WFPS and 22°C.

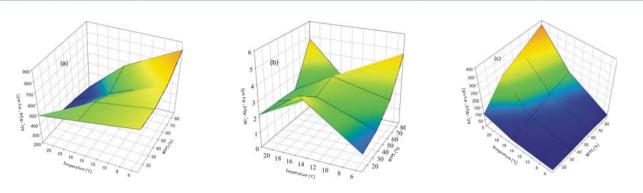


Figure. 1 The interaction of soil WFPS and temperature on (a) soil NH₂⁺-N, (b) soil NO₂⁻ -N, and © soil NO₃⁻ -N concentrations over time.

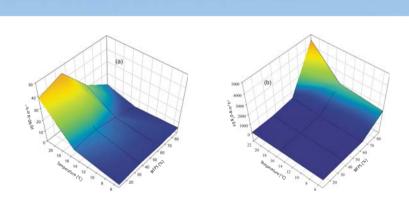
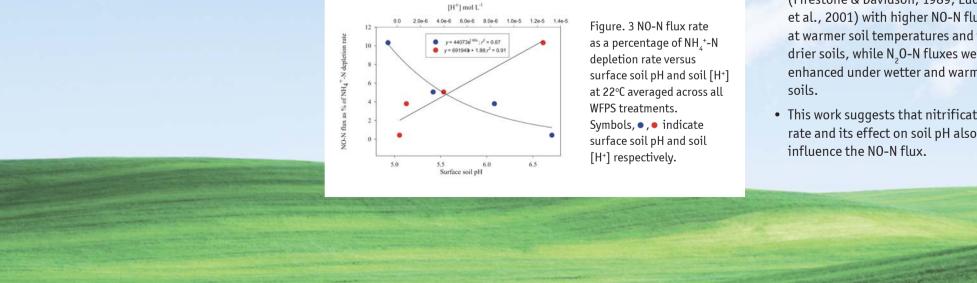



Figure. 2 The interaction of soil WFPS and temperature on (a) NO-N and (b) N₂O-N fluxes after urine application.

Conclusion

- Nitrification rate increased with increasing soil temperature and with increasing WFPS up to 36%.
- It was clearly identified that the soil H⁺ concentration was a key determinant of the NO-N flux at 22°C and that the net NO-N flux was not solely due to biotic factors.
- The soil temperature and WFPS effects on N₂O-N and NO-N fluxes from urine treated soil were consistent with previous rationales and summaries (Firestone & Davidson, 1989; Ludwig et al., 2001) with higher NO-N fluxes at warmer soil temperatures and in drier soils, while N₂O-N fluxes were enhanced under wetter and warmer soils.
- This work suggests that nitrification

New Zealand's specialist land-based university

Lincoln University PO Box 84, Lincoln 7647 Christchurch, New Zealand

www.lincoln.ac.nz

