Pastoral agriculture -

Definition (Wikipedia):

Being 'carbon neutral', or having a 'net zero carbon footprint', refers to achieving net zero carbon [dioxide] emissions by balancing a measured amount of carbon released with an equivalent amount sequestered or offset, ... extended to include other greenhouse gases measured in terms of their carbon dioxide equivalence.

Conventional carbon neutrality

The net result of carbon (C) transfer from and back to the atmosphere through the pasture-ruminant-human food-chain is that for every 20 t(C) as CO_2 (ie, for every 73 t(CO_2)) that is photosynthesised only 0.2 t(C) is not returned to the atmosphere as CO_2 . That 0.2 t(C) is returned as CH_4 : (see figure). Atmospheric CH_4 eventually oxidises in situ to CO_2 (Box 1.1). But CH_4 is the more potent greenhouse gas (GHG), molecule

Background Science: greenhouse gas cycling

1.1 Methane (CH_4)

The rate of removal of CH_4 from the atmosphere is proportional to its concentration there (first-order in-situ process). Mass balance $\partial C / \partial t = S - \lambda C$

BOX 1

1.3 Carbon dioxide (CO_2)

The situation for CO₂ is very different from CH_4 and N_2O :

- Atmospheric removal is only through net exchange with other C reservoirs on many time scales (see schematic)
- CO₂ exchanges rapidly with surface ocean and with the biosphere: total ~200 Pg(C)/yr (the "labile" C cycle)
- Labile C exchanges over a few centuries with deep ocean

Keith R. Lassey

(k.lassey@niwa.co.nz) NIWA, Wellington, New Zealand

for molecule, due to its stronger absorption from Earth's outgoing radiation spectrum. By how much? Sanctioned answer uses the GWP for CH_4 (Box 2): each kg(CH_4) emitted is "equivalent" to 21 kg(CO_2).

Thus, pastoral agriculture is not "carbon neutral" (unless a substantial part of the "respiration & decay" flux can instead be "sequestered" long-term in pastoral soil). This is NOT due to imbalance of C atoms, but because the 0.2 t(C) emitted as 0.27 t(CH₄) is "equivalent" to 5.6 t(CO₂) (Box 2). Thus of the 73 t(CO₂)/ha/yr sucked out of the atmosphere, an extra 5.6 t (CO₂-equivalent)/ha/yr is returned there.

In addition to CH_4 , pastoral agricultural also releases N_2O , a very potent GHG that arises from the cycling of nitrogen (N). Of plant-N consumed by the animal, dietary excess is excreted onto pasture soil. Fertiliser-N is also spread directly onto pasture soil. Of that applied N, ~1% is transformed biologically into N_2O , most from urine deposits. The mean N_2O flux of ~6 kg(N)/ha/yr is "equivalent" to ~2.9 t(CO₂-equivalent)/ha/yr.

Are GHGs really CO₂-equivalent?

For most GHGs, the atmospheric concentration is controlled by past and present emission rates and any changes to their removal rates. The critical exception is CO₂:

 human activities are adding fossil CO₂ to the labile C cycle (Box 1.3) where

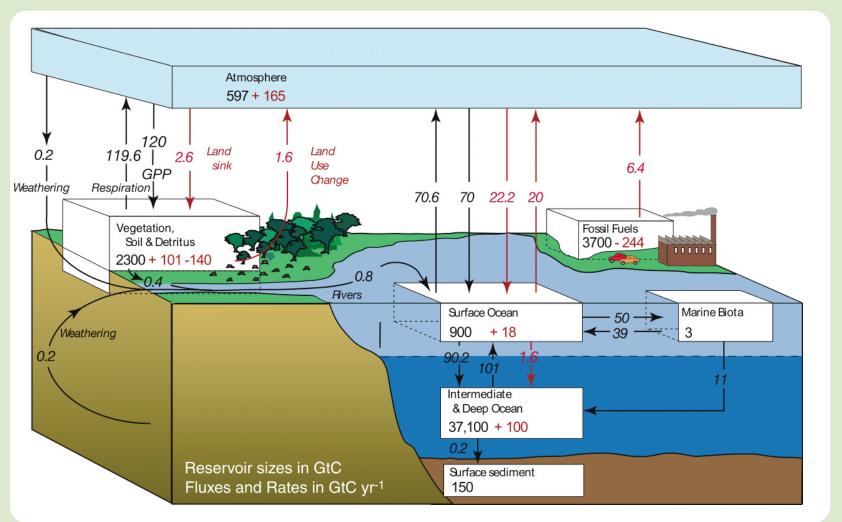
- S(t) is the global CH_{A} source strength
- λ is the fractional CH_{λ} removal rate (oxidation to CO_{2})

• $\tau = \lambda^{-1}$ is the mean atmospheric residence time for CH₄ In recent decades *S* appears to be varying only slowly ($\approx 600 \text{ Tg/yr}$, ~40% natural), and the removal rate, mainly by photochemically generated OH radical, seems remarkably stable ($\tau \approx 8.5 \text{ yr}$). Solution to above equation is:

 $C(t) = S / \lambda + (C_o - S / \lambda) \exp(-\lambda t)$

where the first term is the steady-state value and the second term describes how C(t) transiently approaches steady state from a previous state. Atmospheric CH₄ is currently close to global steady state at a level 2.5 times higher than pre-industrial levels (1800 versus 700 ppb).

Ruminant livestock globally emit ~90 Tg/yr, ~15% of the total CH₄ source (~25% of the anthropogenic source), so account for ~15% of atmospheric CH₄. NZ ruminants emitted ~1.1 Tg CH₄ in 2007.

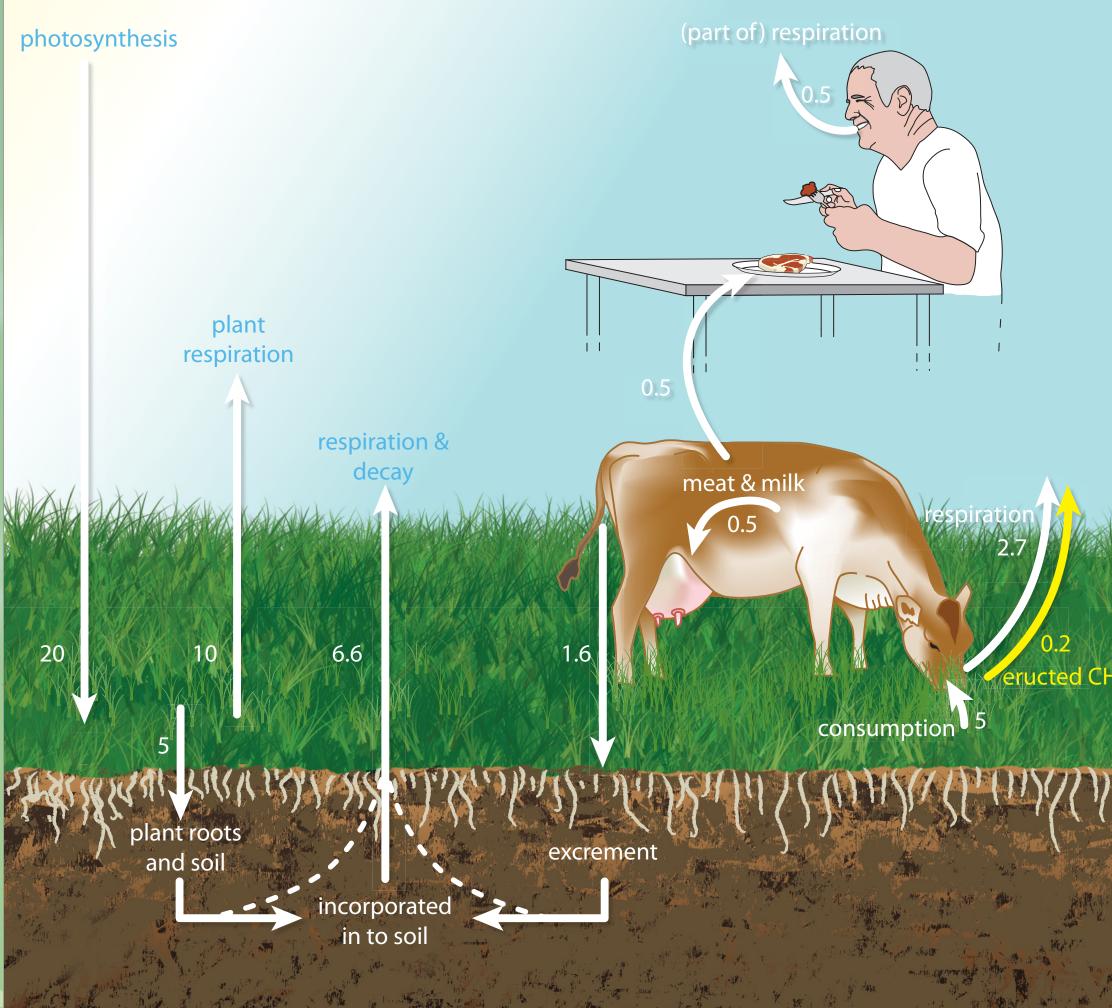

1.2 Nitrous oxide (N_2O)

An identical formalism as for CH₄ but different numbers: $\tau \approx 114$ yr, $S \approx 18$ Tg(N)/yr (~60% natural, ~15% from agriculture). N₂O is removed by photolysis in the stratosphere. Growth in atmospheric N₂O started in early 1900s, now 18% higher (320 versus 270 ppb). Even with unchanging sources, atmospheric N₂O will continue to rise toward a steady state near 450 ppb later in the millennium.

- Labile C exchanges over millennia with carbonate and silicate rocks and with ocean sediments
- "Fossil" C laid down in geological deposits (coal, oil, gas) eg, in carboniferous era (>10⁸ yr BP) is relatively isolated from above reservoirs except through human intervention that is returning fossil C to the atmosphere

An individual CO₂ molecule resides for ~5 yr in the atmosphere, but a perturbing net "slug" of CO₂ persists much longer: model \implies ~20% still airborne after 10³ yr, >10% after 10⁴ yr (Archer 2005, Archer & Brovkin 2008, Tyrrell *et al.* 2007).

Such longevity of a net slug of CO_2 cf CH_4 , $N_2O \implies$ impossible to equate non- CO_2 emission to a universal "equivalent" CO_2 emission.


Schematic of the global carbon cycle for ca 1995, showing reservoir sizes in Gt(C) (1 Gt \equiv 1 Pg \equiv 10⁹g) and the main annual fluxes in Gt(C)/yr: pre-industrial natural fluxes in black and anthropogenic fluxes in red. Gross fluxes generally have uncertainties of more than \pm 20%. (Source: IPCC/AR4-WG1, 2007).

- total C in labile reservoirs is therefore steadily growing
- atmospheric CO₂ level is controlled by cumulative anthropogenic CO₂ emissions.

Recent computer modelling of emission reductions needed to avoid dangerous interference with the climate system (eg, limit global temperature rise to 2°C) find:

- that it is necessary to limit cumulative fossil CO₂ emissions (Allen *et al.* 2009, England *et al.* 2009, Matthews *et al.* 2009, Zickfeld *et al.* 2009)
- that continued CO₂ emissions will induce irreversible climatic change (Matthews & Caldeira 2008, Solomon *et al*. 2009)
- that the economically-optimal balance between emission reduction of CO₂ and of non-CO₂ GHGs changes over time with the latter becoming more efficacious as a target date nears (e.g., Manne & Richels 2001, van Vuuren *et al.* 2006)
- that GHG fungibility using standard GWPs (Box 2) may not lead to climatically optimal, nor economically optimal, outcomes (e.g., Fuglestvedt *et al.* 2000, Johansson *et al.* 2006, Shine 2009)

There is a great need for similar computer modelling to be applied to the NZ circumstance in which non-CO₂ GHGs account for more than half of the CO₂-equivalent national emission inventory, rather than act as little more than adjustments to the dominant CO₂ emission as applies to all other OECD countries. Such an approach has the potential to require that more attention be directed to the faster growing CO₂ emission as part of an optimal mitigation strategy. Carbon flows in a representative dairy pasture

Carbon flows reflect a near-steady state (units: t(C)/ha/yr). Flows to/from atmosphere are CO₂ except

BOX 2

Global Warming Potentials and CO₂-equivalent emissions

A GHG in the atmosphere absorbs and re-emits energy from Earth's outgoing infrared (IR) spectrum that would otherwise escape to space. Prior to industrialisation, no net radiant energy left the Earth-atmosphere system, and GHGs in that atmosphere (mainly H₂O, CO₂, CH₄, N₂O) kept Earth's surface >30°C warmer than it would otherwise have been (natural greenhouse effect). Since then, anthropogenic GHGs have altered this energy balance, the alteration being measured by the "radiative forcing" of each such GHG.

So how can we inter-relate the radiative impacts of two GHG emissions to the atmosphere? The answer is encapsulated in the GWPs of each gas:

 $GWP_{X} = \frac{\text{Radiative forcing of 1 kg } X \text{ integrated over ensuing time } T}{\text{Radiative forcing of 1 kg CO}_{2} \text{ integrated over ensuing time } T}$

where X denotes the particular gas, and CO_2 is the common "reference gas". Thus, the GWP accounts for both the IR absorptivity of the gas and its net atmospheric persistence throughout T (Box 1). The "time horizon" T could be infinity (to capture radiative impacts over all time), but this would give a near-infinite (and poorly determined) denominator. The GWP for CH includes "indirect effects" but excludes the role of the eventual CO₂ oxidation product. Parties to the UNFCCC, including to the Kyoto Protocol (KP), agreed to use the GWP for T = 100 yr to construct a common CO₂-equivalent scale for all GHG emissions. The KP prescribed GWPs for CH₄ and N₂O of 21 and 310 kg/kg respectively. Thus, an emission of 1 kg CH, is deemed equivalent to an emission of 21 kg CO₂ (or 7.6 molecules of CO₂ per molecule of CH₄). These GWP values have since been re-evaluated at 25 and 298 for CH₄ and N₂O (IPCC/AR4-WG1, 2007).

Managing Climate Change (MC2) Conference Palmerston North, NZ 18-20 Nov 2009

The author acknowledges funding under FRST contract C01X0703.

where indicated. (Source: Tony Parsons, AgResearch, based on Parsons & Chapman (2000)).

References cited

Allen, M.R. et al. (2009). Nature 458: 1163-1166. Archer, D. (2005). J. Geophys. Res. 110: C09S05, doi:10.1029/2004JC002625. Archer, D. & Brovkin, V. (2008). *Climatic Change 90*: 283–297. England, M.H. et al. (2009). Proc. Nat. Acad. Sci. 106: 16,539–16,140. Fuglestvedt, J.S. et al. (2000). Geophys. Res. Lett. 27: 409-412. Johansson, D.J.A. et al. (2006). Climatic Change 77: 291–309 Manne, A.S. & Richels, R.G. (2001). Nature 410: 675–677. Matthews, H.D. & Caldeira, K. (2008). Geophys. Res. Lett. 35: L04705, doi:04710.01029/02007GL032388. Matthews, H.D. et al. (2009). Nature 459: 829-832. Parsons, A.J. & Chapman, D.F. (2000). In: Hopkins A. (ed) Grass. Third Edition. British Grassland Society. Blackwells Scientific Publications, pp. 31–89. Shine, K.P. (2009). *Climatic Change* 91: 467–472. Solomon, S. et al. (2009). Proc. Nat. Acad. Sci. 106: 1704–1709. Tyrrell, T. et al. (2007). Tellus 59: 664–672. van Vuuren, D. et al. (2006). Energy Economics 28: 102–120. Zickfeld, K. et al. (2009). Proc. Nat. Acad. Sci. 106: 16129-16134.

A common emission scale allows GHG substitution ("fungibility"), enabling a country to adopt a least-cost approach to reducing her CO₂-equivalent emission.

NIWA – leading environmental science

www.niwa.co.nz