

Integrating the DNDC model into the Indicator **Database for European Agriculture** Adrian Leip¹, Marco Follador¹, Berien Elbersen²

1-European Commission – Joint Research Centre - Institute for Environment and Sustainability, CCU-GHG-AFOLU action 2-ALTERRA – Wageningen, The Netherlands

→What is the Indicator Database for European Agriculture (IDEAg)

→Assessment of the impact of "Cross-Compliance"

DeNitrification DeComposition

DNDC-Model

Li et al., 1992, 2000,...

CAPRI – Common Agricultural Policy Regional Impact Assessment

Enviro

Ca. 40 regions/products including gluten feed & palm oil, CAP, TRQs (bi-lateral and global)

Economic model – production, demand, trade and prices are interacting and simulated simultaneously

Two interlinked modules:

- → A globally closed model for production, demand and trade in primary and secondary agricultural products, including oils and cakes
- → NUTS II simulation models for EU27 which capture in detail farming decisions (crop shares, animal herds, yields, fertilizer use ..)

250 regions for EU27+Norway +Western Balkans, endogenous yields, detailed input coefficients, CAP policy

Indicators calculators

GHG budget according IPCC Nitrogen balances from GAINS/MITERRA LCA energy use in agriculture

Geographic layers from CAPRI-disaggregation

JRC-AL: MC2, Palmerston North - 20.11.2009 - 7

EUROPEAN COMMISSION

Joint Research Centre

DIRECTORATE-GENERAL

EUROPEAN COMMISSION DIRECTORATE-GENERAL **Joint Research Centre**

Environmental data

JRC-AL: MC2, Palmerston North - 20.11.2009 - 8

The DNDC-CAPRI meta-model.V1

Environment and Sustainability

DNDC-CAPRI metamodel Nitrogen losses for the cultivation of rape seed

Institute for Environment and Sustainability

- → Allows "fast" simulation of large numbers of spatial units/crops combinations
- \rightarrow Allows the calculation of marginal effects giving N-input shocks
- → Improves consistency with process-based model through calibration of yield at HSMU/crop level

JRC-AL: MC2, Palmerston North - 20.11.2009 - 10

For nitrogen indicators it is important that nitrogen input matches (expected) nitrogen yield and nitrogen surplus

Joint Research Centre

Flow of information the CAPRI-DNDC modelling framework

Cross-compliance

Reform of the EU-Common Agricultural Policy 2003 Establishing a link between

- →the granting of income support and
- →compliance with specified requirements of public interest:
 - Maintaining land in good agricultural and environmental condition + maintaining permanent pasture at level at 1.5.2004
 - Compliance with statutory management requirements (environment, food safety, animal health and welfare)

Joint Research Centre

The Cross-Compliance Assessment Tool project (CCAT)

→To develop an integrated knowledge tool for the assessment of the impacts of Cross-Compliance on air, soil and water quality indicators on a European scale

Environmental impact

→Apply mechanistic models (DNDC, EPIC) to assess specific impacts of CC on air, soil and water quality indicators.

→To develop simplified functions from the applied mechanistic models to be included in the integrated knowledge tool

Joint Research Centre

Nitrate Directive

Aims at "to decrease water pollution caused or induced by nitrates from

agricultural sources and prevent further such pollution"

- \rightarrow No more than 50 mg NO3/liter in groundwater
- → Applicable in Nitrate Vulnerable Zones (NVZ)

Nitrate-Directive measures:

- → Balanced N fertilizer application
- \rightarrow Maximum manure N application (170 kg N/ha)
- →Limitation to N application in winter and wet periods
- → Limitation to N application on sloping grounds
- → Manure storage with minimum risk on leaching
- → Appropriate application techniques

CAT Buffer zones

ross Compliance Assessment Growing winter crops

CC scenarios implementation

HSMU subset selection: about 20000 HSMUs among the entire EU25 set, min threshold in land use (corn>10% of HSMU agricultural land).

Period: 1990-1999. Corn Monoculture

Cross Compliance Assessment Tool

Institute for Environment and Sustainability

CC scenarios implementation

	CC standard	CC-description	Implementation
Joint Research Centre		 Reference scenario Monoculture corn 20000 HSMU 	S1: - Tillage 20 cm - 1 fertilizer N input - 2 manure N input
	GAEC 02 "NO TILL"	 Tillage reduction Soil organic matter recovery 	S2: - like S1 without tillage
	SMR02 "MAX MANURE"	 Max Manure is 170 kgN/ha 	S3: - like S1 max manure amendment 170 kgN/ha
	SMR08 GAEC 02-03-04	 Surface protection; standard Crop rotation; catch crops 	 S4: - 2 cycles corn (2y)-alfalfa (3y). Corn like S1, alfalfa no- till, 1 manure appl.
Cross Com	Since Assessment Tool	Limitation of N application in winter	S5: - split of fertilizer input into 2 application (at sowing and beginning of winter)

JRC-AL: NCGG-5, Wageningen – 01.07.2009 - 17

[kg N/ha yr] - S5

Ω

Cross Compliance Assessment Tool

JRC-AL: NCGG-5, Wageningen - 01.07.2009 - 18

Cross-Compliance leads in most cases to a reduced environmental impact for N2O, N-leaching and total N surplus.

• NO-TILLAGE: N2O -20%, N leaching -13%, N surplus +6%

Conclusion

- MAX-MANURE: N2O -24%, N leaching -14%, N surplus -15%
- CATCH CROP: N2O -27%, N leaching -20%, N surplus -34%
- WINTER APPL: N2O +10%, N leaching -11%, N surplus -1%
- → The Indicator Database for European Agriculture is a comprehensive Europe-wide database with consistent data to develop (environmental) indicators for various purposes.
- → Current applications: N-budget (soil/farm/regional); N-losses at watershed; link to sewage N2O emissions; additional sensitivity studies; marginal emission factors (biofuels); biofuel scenarios; LCA assessment of the livestock sector ...