JIRCAS

Estimation of CH_4 and N_2O emissions from rice fields under AWD irrigation management through a DNDC model approach

Managing Climate Change (MC2) "Process, Measurements, Modelling and Mitigation of Greenhouse Gasses" 18-20 November 2009 Massey University, Palmerston North, New Zealand

N. Katayanagi^{1,2}, Y. Furukawa^{2,3}, T. Fumoto⁴, and Y. Hosen^{1,2}

 Japan International Research Center for Agricultural Sciences, Tsukuba, Japan 2 International Rice Research Institute, Los Baños, Philippines
 3 Niigata Agricultural Research Institute, Nagaoka, Japan (present address) 4 National Institute of agroenvironmental Sciences, Tsukuba, Japan E-mail: n.katayanagi@cgiar.org

Table of Contents

- 1. Background
- 2. Modification of DNDC-Rice model
- 3. Model Validation
- 4. Summary

Table of Contents

- 1. Background
- 2. Modification of DNDC-Rice model
- 3. Model Validation
- 4. Summary

Alternate Wetting and Drying

- A Water-saving irrigation technique for rice cropping
 AWD has been investigated by International Rice Research Institute (IRRI) in Philippines since the early 1970's.
- With the technique:
 - 15-30% unproductive water outflow can be cut down
 - Water productivity can be increased without sacrificing yield.
- The main objectives of research for AWD technique are:
 - The spread of the technique
 - The evaluation of the technique from the viewpoint of its environmental impact

Irrigation Timing of AWD technique

Standing water

Maximum height of standing water, e.g. + 50mm

Criteria of driest conditions, e.g. Certain soil water tension at 150 mm depth or Water table down to 400 mm depth

Soil

2009/11/20

Managing Climate Change - MC2

AWD

Continuously

flooding

AWD

Time

Instruments for monitoring hydrological conditions

Tensiometer

Field water tube

2009/11/20

Managing Climate Change - MC2

6

AWD management paddy rice field, IRRI

N2S1

GHGs measurement conducted in IRRI since 2007

AWD can decrease GWP of paddy fields

2009/11/20

Managing Climate Change - MC2

Table of Contents

Background
 Modification of DNDC-Rice model

3. Model Varidation

4. Summary

2009/11/20

Managing Climate Change - MC2

DNDC model

Outline

DNDC model for rice paddy fields

- 1992: A DNDC model was developed by Li et al. (1992)
 - Process-based model for agroecosystems
 - simulates carbon and nitrogen dynamics based on biogeochemical processes
 - Non-flooded agricultural conditions
 - Carbon sequestration
 - GHGs (N₂O, CH₄, CO₂, NO and NH₃)
- 2004: Anaerobic biogeochemistry was incorporated for rice paddy fields (Li et al. 2004)
- 2008: DNDC 8.2 was modified for paddy ecosystems by Fumoto et al. (2008) →DNDC-Rice model
- 2009: A regional scale evaluation of CH₄ emission using the DNDC-Rice model (Fumoto et al. 2009)

DNDC model

Schematic description of the soil biogeochemistry sub-model of DNDC-Rice (Fumoto et al. 2008 and 2009)

2009/11/20

Modification

Schematic description of the soil biogeochemistry sub-model of DNDC-Rice (Fumoto et al. 2008 and 2009)

2009/11/20

Modification

Cs

S

O₂ diffusion to soil

Cs: crack space (m) h: thickness of a layer (m)

h

O₂ diffusion from surface

 O_2 diffusion from four rateral faces Crack_factor = 4/Cs * h₂

(Fumoto et al. 2008)

Modification

Gas diffusivity model – Osozawa 1987

- Osozawa (1987)

(Fumoto et al. 2008 and 2009)

DNDC model

Gas diffusivity model – BBC model

- Backingham-Burdine-Campbell (BBC) model (Moldrup et al. 1999, Rolston and Moldrup 2002)
 - $D_{i} = D_{0,T} \phi_{i}^{2} (\phi_{i} / \varepsilon_{i})^{2+3/b}$
 - $D_{0,T} = D_{0,20} ((273+T)/(273+20))^{1.72}$
 - b = 13.6 clay + 3.5
 - D_i : O_2 -air diffusion coefficient in soil (cm² sec⁻¹) $D_{0, T}$: O_2 -air diffusion coefficient in air at T °C, 1 atm (cm² sec⁻¹) $D_{0, 20}$: O_2 -air diffusion coefficient in air at 20 °C, 1 atm
(=0.201 cm² sec⁻¹) ϕ_i :porosity (m³ m⁻³) ε_i :gas phase (m³ m⁻³)b:campbell pore-size distribution parameter

Managing Climate Change - MC2

DNDC model

Other changes

- Decomposition factor (DRF) was changed from 0.82 to 0.2.
- Water table estimation
 - Water table was estimated using simulated WFPS values of each 2cm depth soil.
 - Assumption1:
 - water content $\geq 0.94 \rightarrow$ saturated
 - water content < 0.94 \rightarrow unsaturated
 - Assumption2:

There is the water table at the top layer of the saturated layers.

7) W1-N2

Table of Contents

- 1. Background
- 2. Modification of DNDC-Rice model
- 3. Model Validation
- 4. Summary

(7) W1-N2

Method

Method

A pot experiment conducted in a screenhouse, IRRI

		Non and a second			
	Size of the pot	A STATE			
	700 mm height and 530 mm i.d.				
	Bulk density (0-15 cm)				
	$0.82 \pm 0.53 (Mg m^{-3})$				
-	Percolation rate	1 (mm day-1)			
	Clay content	59%			
	Soil organic C cont.	2.4%			
•	Soil pH	6.2			
W2-1	Soil texture	Clay			
•	Field water capacity	0.8 (WFPS)			
	Wilting point	0.4(WFPS)			

Managing Climate Change - MC2

Method

2009/11/20

Managing Climate Change - MC2

Measurement of CH₄ and N₂O fluxes

Gas sampling

- Closed-chamber method
 Collected gas samples at 0, 15, and 30 minutes after closing a rid.
 Gas analysis
 CH₄ Gaschromatography with FID
- N₂O Gaschromatography with ECD
- Calculation of gas fluxes
 - Linear regression method

Method

Meteorological data

- Site: IRRI wetland
 - Daily maximum temperature
 - Daily minimum temperature
 - Solar radiation

Precipitation was assumed zero because the measurement was conducted in a screenhouse.

Method

Statictics

Root Mean Square Error (RMSE)

RMSE

- A_m : MINO F_i : A_i : N:
- mean value of observed values
 Simulated value
 Observed value
 Number of sample

Results

Observed daily maximum and minimum temperature and solar radiation during the cropping period

Results

Observed and simulated water table for continuously flooding and AWD

2009/11/20

26

Results

Simulated daily O₂ content at 10 cm depth soil under continuously flooding and AWD management fields.

2009/11/20

Results

Observed and simulated daily CH_4 and N_2O fluxes under continuously flooding (DRF=0.2)

2009/11/20

Managing Climate Change - MC2

Results

Observed and simulated daily CH₄ and N₂O fluxes under AWD irrigation

2009/11/20

Observed and simulated CH₄ and N₂O emission rates of paddy fields under continuously flooding and AWD during the cropping period

	Observed value		Modification	
	(mean , SE)		Before	After
CH ₄ emission (kg C ha ⁻¹)				
Continuously flooding	462	15.7	602	498
AWD	125	9.3	475	278
		A LANG		
N ₂ O emission (kg N ha ⁻¹)			(2) (New York Contraction
Continuously flooding	0.00435	BIWZ-N2 0.0416	0.0223	0.00930
AWD	2.046	0.0470	0.0314	0.604

Summary

Modification of calculation method for O_2 diffusion improved accuracy of simulation results of CH_4 and N_2O fluxes, even though more improvement must be added.

Plan

We are going to make more modification to the model using monitoring data collected in field.

23L W.N.S.

the state

22L W.N.S.L

Thank you for listeing !

21L W.K.S.T

20E W1N1S1T1 and tailands / fadand

20L W1N1S1T2