
Using 50 years of radiocarbon data to quantify 
soil carbon dynamics in New Zealand 
pastures: 
the missing link for robust soil carbon 
models?

W Troy Baisden
(National Isotope Centre, GNS Science, New Zealand)
Roger Parfitt & Craig Ross (Landcare Research)
Louis Schipper (Univ. of Waikato)



GNS Science

Why is soil carbon turnover important to 
quantify?

• Understanding in ecosystem biogeochemistry 
models (parameterisation). 

ki = fluxi / stocki

• Rate of soil C change following a change in land 
use or management
– Kyoto & Copenhagen
– ETS development
– Lifecycle analysis

• Sensitivity of the soil C pool to climate change
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Are these model pools un-measurable?

Metherell et al 1993
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Are these model pools un-measurable?

Baisden et al 2002a Global Biogeochemical Cycles
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These model pools are measurable.

Metherell et al 1993
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Methods to quantify soil carbon turnover rate 
(k)

• k = Flux / Stock

• Tracer (isotope) studies

• Biomarker loss rate following change

� δ13C following C3/C4 vegetation change

• “Natural” Δ14C (radioactive clock + H-bomb)



Judgeford, New Zealand
O’Brien & Stout, 1978
Baisden & Parfitt, 2007
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Judgeford Soil, New Zealand (41°S)

16 year

100 year
2 year
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Three Assumptions are Critical 
(without time-series samples)

• Pitfall 1: A small component of old carbon 
(Fraction Passive). Example: 10% charred C.

• Pitfall 2: Lag times. The sampled soil may have 
received carbon that was been part of another 
carbon pool for some time

• Deep soil may receive inputs from overlying soil
• Light fraction receives inputs from litter, which may 

reside on evergreen trees for 10 years
• Pitfall 3: Changing Input Rates (Pool Size)

• Soil fraction begins forming after land-use change

We now have a database of ~400 time-series measurements.
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Lag time: How long does it take a leaf to fall?
Beech (Nothofagus spp) leaves were collected at 41° S from the forest floor
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Soil organic matter and Al in NZ soils 
(0–20 cm)

• Regression for all soils                      f(Al_py)       R2=0.6
• Regression allophanic soils              f(Al_py)        R2=0.5
• Multiple regression allophanic soils      

f(Al_py, Fe_d, rain)     R2=0.8

Percival et al.  SSSAJ 2000
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Comparison 1: Tokumaru vs Egmont

Gisportal.LandcareResearch.co.nz
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Comparison 1: Tokumaru vs Egmont
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Comparison 2: Te Kowhai vs Bruntwood

Gisportal.LandcareResearch.co.nz
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Comparison 2: Te Kowhai vs Bruntwood

But Bruntwood had observed C losses. Non-steady state?
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What can we do with this information?

• The ultimate goal is represent SOM turnover so 
it can be used in ecosystem models.

Soil C turnover (Mg C ha-1 y-1) = 
C stock x (1 – Frac Passive) x k

For Egmont: 
90 Mg C ha-1 x (0.86) x 1/15 y-1 = 5 Mg C ha-1 y-1

For Tokomaru:
60 Mg C ha-1 x (0.83) x 1/9 y-1 = 5 Mg C ha-1 y-1

ANPP=5.3ANPP=5.3

ANPP=5.4ANPP=5.4
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Afforestation example: 
Why residence times can matter…

• New Zealand’s post 1989 planted forests are 
currently estimated to remove 4.6 Tg C from the 
atmosphere each year during 2008-12. 

• These net removals work out to 8.3 tC ha-1 y-1.
• Current estimates place soil C losses at 10 tC ha-

1 over 20 years, but the timing of soil C losses is 
poorly understood. 

• How much will soil C loss subtract from the 8.3 
tC ha-1 y-1 of net removals NZ gets credit for.
– All?
– None?
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Afforestation Example: 
For 17 and 27 year 
residence times:

Scaled C inputs to match steady state pool size
Based on yield tables underlying NZ inventory

17y

27y

27y

17y
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Conclusions

• Appropriate use of 14C can resolve residence 
times with high accuracy when archived 
samples are available.
– Two times of sampling provide greatly 

improved residence times over a single time.
• A large suite of data from the ‘bomb spike’ 

period helps to resolve how to develop models.
• Robust residence times improve calculations 

related to pool sizes, turnover, and rates of 
change. Other data (e.g. NPP, respiration) 
should be integrated in calculations/models if 
available.
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We also do this:

• Solve for these parameters as a function of soil 
depth, studying soil fractions & DOM

• Where soil C has been lost (or gained) between 
two samplings, we can solve for the Δ14C of the 
C lost (or gained)

• Develop complementary biomarker methods 
(e.g. lignin-derived compounds) 
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Thanks

• I look forward to 
discussing 
collaborations 

• Huge thanks to co- 
workers past and 
present! 
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How does 14C move through soil?

Baisden W, Parfitt R. 2007. 85(1):59-68.
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How does 14C move through soil?

Baisden W, Parfitt R. 2007. 85(1):59-68.
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Δ t2Mt 2 = Δ t1Mt 2 + Δ flux M flux
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14C Conclusions

• Resampled soil profiles are well-suited to the use of 14C 
to identify the age of C lost from each horizon.

• This can be completed after the use of 137Cs to quantify 
erosion and deposition.

• In the Foxton profile, and other similar soils, pre- 
European forest-derived soil C is being lost below 40 cm, 
while “bomb 14C” is being lost near the surface and 
accounts for most of the C loss from the profile.

• Consistent results from this approach confirm the validity 
of most resampled sites.
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Biomarker: Lignin

Source: Wikipedia



GNS Science

Examples of Lignin Monomers

Guaiacol SyringylP-hydroxyphenol

Source: Wikipedia

30-50% of non-woody
<15% of woody

p-hydroxybenzoic acid

As 4-methoxy benzoic 
acid, methyl ester (P6)

>90% of conifer
~50% angiosperm

Vanillic Acid

As 3,4-dimethoxy benzoic 
acid, methyl ester (G6)

~50% of angiosperms

Syringic Acid

As 3,4,5-trimethoxy benzoic 
acid, methyl ester (S6)THM

CuO
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Relative change in C and lignin-derived compounds for surface horizons

Method Data Crookston Koputaroa Himatangi
Dry Comb. %OC 2% -11% -21%

p-hydroxybenzaldehyde -1% -15% -42%
p-hydroxyacetophenone 12% -13% -40%
p-hydroxybenzoic acid -36% -44% -30%
p-hydroxycinnamic acid -9% -27% -26%
ferulic acid -19% -37% -29%

CuO vanillin 12% -45% -51%
acetovanillone 24% -37% -44%
vanillic acid -11% -39% -37%
syringealdehyde -29% -20% -44%
acetosyringone -4% -11% -39%
syringic acid -24% -19% -32%

S6 13% -69% -28%
THM G6 -9% -66% -28%

P6 68% -83% -65%
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Soil %C P6 G6 S6

Crookston 2% 68% -9% 13%

TeKowhai -2% -35% -3% -4%
Bruntwoo 

d -5% -58% 6% -16%

Koputaroa -11% -83% -66% -69%

Himatangi -21% -65% -28% -28%

Soil %C P6 G6 S6

TeKowhai 8% 53% 34% -4%
Bruntwoo 

d -24% -58% -46% -60%

Himatangi -49% 213% 72% 66%

Relative % change in C, P6, G6 & S6 for surface horizons

• Ongoing losses of forest-derived lignin appear to be 
occurring in some soils.

• Many soils do not appear to be stabilising grass-derived 
lignin. P6 stabilisation is correlated with C gain/loss.

• Resampled profiles are well-suited to this technique, 
alleviating some concerns about chemolytic procedures. 
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Relative % change in C, P6, G6 & S6 for 1st & 2nd horizons

Soil %C P6 G6 S6

Crookston 2% 68% -9% 13%

TeKowhai -2% -35% -3% -4%
Bruntwoo 

d -5% -58% 6% -16%

Koputaroa -11% -83% -66% -69%

Himatangi -21% -65% -28% -28%

Soil %C P6 G6 S6

TeKowhai 8% 53% 34% -4%
Bruntwoo 

d -24% -58% -46% -60%

Himatangi -49% 213% 72% 66%



GNS Science

Overall Conclusions

• Resampled soil profiles are well-suited to the use of 14C, 
137Cs and biomarker tracers to identify reasons for 
apparent C (and N) losses.

• Analyses on selected profiles support the hypotheses 
that: 
1. Soil C and N changes may be due to erosion and 

deposition; 
2. Pre-European forest-derived organic matter is being 

lost; 
3. Changes in litter quality or microbial processes are 

reducing the amount of plant-derived OM stabilized 
in soil

• Caution should be used in extrapolating these results; 
ongoing work focuses on additional profiles and 
biomarker compounds.
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Goal:  constrain SOM dynamics
•Radiocarbon (open system with isotope tracer)
•Nutrient cycling (~closed system)

Soil 
Organic
Matter

Nutrients (N) Feedback

CO2
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Pitfall 3: Changing Input Rates (Pool Size) 
Modeled by changing inputs at 1950

80‰
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