Using 50 years of radiocarbon data to quantify soil carbon dynamics in New Zealand pastures: the missing link for robust soil carbon models?

W Troy Baisden (National Isotope Centre, GNS Science, New Zealand) Roger Parfitt & Craig Ross (Landcare Research) Louis Schipper (Univ. of Waikato)

Why is soil carbon turnover important to quantify?

• Understanding in ecosystem biogeochemistry models (parameterisation).

 $k_i = flux_i / stock_i$

- Rate of soil C change following a change in land use or management
 - Kyoto & Copenhagen
 - ETS development
 - Lifecycle analysis
- Sensitivity of the soil C pool to climate change

Are these model pools un-measurable?

Are these model pools un-measurable?

Baisden et al 2002a Global Biogeochemical Cycles

These model pools are measurable.

Methods to quantify soil carbon turnover rate (k)

- k = Flux / Stock
- Tracer (isotope) studies
- Biomarker loss rate following change
- \Box δ^{13} C following C3/C4 vegetation change
- "Natural" △¹⁴C (radioactive clock + H-bomb)

Judgeford, New Zealand O'Brien & Stout, 1978 Baisden & Parfitt, 2007

Judgeford Soil, New Zealand (41°S)

Three Assumptions are Critical (without time-series samples)

- Pitfall 1: A small component of old carbon (Fraction Passive). Example: 10% charred C.
- Pitfall 2: Lag times. The sampled soil may have received carbon that was been part of another carbon pool for some time
 - Deep soil may receive inputs from overlying soil
 - Light fraction receives inputs from litter, which may reside on evergreen trees for 10 years
- Pitfall 3: Changing Input Rates (Pool Size)
 - Soil fraction begins forming after land-use change

We now have a database of ~400 time-series measurements.

Lag time: How long does it take a leaf to fall?

Soil organic matter and AI in NZ soils (0–20 cm)

Percival et al. SSSAJ 2000

- Regression for all soils
- Regression allophanic soils
- Multiple regression allophanic soils

 $f(Al_py, Fe_d, rain) = R^2=0.8$

f(Al_py)

f(Al_py)

 $R^2 = 0.6$

 $R^2 = 0.5$

Comparison 1: Tokumaru vs Egmont

Comparison 1: Tokumaru vs Egmont

A.

10

0

20

30 Km

Comparison 2: Te Kowhai vs Bruntwood

But Bruntwood had observed C losses. Non-steady state?

What can we do with this information?

- The ultimate goal is represent SOM turnover so it can be used in ecosystem models.
- Soil C turnover (Mg C ha⁻¹ y⁻¹) = C stock x (1 – Frac Passive) x k For Egmont: **ANPP=5.3** 90 Mg C ha⁻¹ x (0.86) x 1/15 y⁻¹ = 5 Mg C ha⁻¹ y⁻¹ For Tokomaru: **ANPP=5.4** 60 Mg C ha⁻¹ x (0.83) x 1/9 y⁻¹ = 5 Mg C ha⁻¹ y⁻¹

Afforestation example: Why residence times can matter...

- New Zealand's post 1989 planted forests are currently estimated to remove 4.6 Tg C from the atmosphere each year during 2008-12.
- These net removals work out to 8.3 tC ha⁻¹ y⁻¹.
- Current estimates place soil C losses at 10 tC ha⁻¹ over 20 years, but the timing of soil C losses is poorly understood.
- How much will soil C loss subtract from the 8.3 tC ha⁻¹ y⁻¹ of net removals NZ gets credit for.
 - All?
 - None?

Conclusions

- Appropriate use of ¹⁴C can resolve residence times with high accuracy when <u>archived</u> <u>samples are available</u>.
 - Two times of sampling provide greatly improved residence times over a single time.
- A large suite of data from the 'bomb spike' period helps to resolve how to develop models.
- Robust residence times improve calculations related to pool sizes, turnover, and rates of change. Other data (e.g. NPP, respiration) should be integrated in calculations/models if available.

We also do this:

- Solve for these parameters as a function of soil depth, studying soil fractions & DOM
- Where soil C has been lost (or gained) between two samplings, we can solve for the ∆¹⁴C of the C lost (or gained)
- Develop complementary biomarker methods (e.g. lignin-derived compounds)

Thanks

- I look forward to discussing collaborations
- Huge thanks to coworkers past and present!

How does ¹⁴C move through soil?

Baisden W, Parfitt R. 2007. 85(1):59-68.

How does ¹⁴C move through soil?

Baisden W, Parfitt R. 2007. 85(1):59-68.

Foxton Δ^{14} C vs Traditional Depth

¹⁴C Conclusions

- Resampled soil profiles are well-suited to the use of ¹⁴C to identify the age of C lost from each horizon.
- This can be completed after the use of ¹³⁷Cs to quantify erosion and deposition.
- In the Foxton profile, and other similar soils, pre-European forest-derived soil C is being lost below 40 cm, while "bomb ¹⁴C" is being lost near the surface and accounts for most of the C loss from the profile.
- Consistent results from this approach confirm the validity of most resampled sites.

Examples of Lignin Monomers

Source: Wikipedia

P-hydroxyphenol

30-50% of non-woody <15% of woody

CuOp-hydroxybenzoic acidTHMAs 4-methoxy benzoic
acid, methyl ester (P6)

<u>**G**</u>uaiacol

>90% of conifer ~50% angiosperm

Vanillic Acid

As 3,4-dimethoxy benzoic acid, methyl ester (G6)

CH₃O OH OH OH

<u>S</u>yringyl

~50% of angiosperms

Syringic Acid

As 3,4,5-trimethoxy benzoic acid, methyl ester (S6)

Relative change in C and lignin-derived compounds for surface horizons

Method	Data	Crookston	Koputaroa	Himatangi
Dry Comb.	%OC	2%	-11%	-21%
	p-hydroxybenzaldehyde	-1%	-15%	-42%
	p-hydroxyacetophenone	12%	-13%	-40%
	p-hydroxybenzoic acid	-36%	-44%	-30%
	p-hydroxycinnamic acid	-9%	-27%	-26%
	ferulic acid	-19%	-37%	-29%
CuO	vanillin	12%	-45%	-51%
	acetovanillone	24%	-37%	-44%
	vanillic acid	-11%	-39%	-37%
	syringealdehyde	-29%	-20%	-44%
	acetosyringone	-4%	-11%	-39%
	syringic acid	-24%	-19%	-32%
	S6	13%	-69%	-28%
ТНМ	G6	-9%	-66%	-28%
	P6	68%	-83%	-65%

Relative % change in C, P6, G6 & S6 for surface horizons

Soil	%C	P6	G6	S6
Crookston	2%		-9%	13%
TeKowhai	-2%		-3%	-4%
Bruntwoo d	-5%		6%	-16%
Koputaroa	-11%		-66%	-69%
Uimatanai	210/		200/	200/

- Ongoing losses of forest-derived lignin appear to be occurring in some soils.
- Many soils do not appear to be stabilising grass-derived lignin. P6 stabilisation is correlated with C gain/loss.
- Resampled profiles are well-suited to this technique, alleviating some concerns about chemolytic procedures.

213%

72%

Himatangi

-49%

66%

Relative % change in C, P6, G6 & S6 for <u>1st & 2nd</u> horizons

Soil	%C	P6	G6	S6
Crookston	2%	68%	-9%	13%
TeKowhai	-2%	-35%	-3%	-4%
Bruntwoo d	-5%	-58%	6%	-16%
Koputaroa	-11%	-83%	-66%	-69%
Himatangi	-21%	-65%	-28%	-28%

Soil	%C	P6	G6	S6
TeKowhai	8%	53%	34%	-4%
Bruntwoo d	-24%	-58%	-46%	-60%
Himatangi	-49%	213%	72%	66%

Overall Conclusions

- Resampled soil profiles are well-suited to the use of ¹⁴C, ¹³⁷Cs and biomarker tracers to identify reasons for apparent C (and N) losses.
- Analyses on selected profiles support the hypotheses that:
 - 1. Soil C and N changes may be due to erosion and deposition;
 - 2. Pre-European forest-derived organic matter is being lost;
 - 3. Changes in litter quality or microbial processes are reducing the amount of plant-derived OM stabilized in soil
- Caution should be used in extrapolating these results; ongoing work focuses on additional profiles and biomarker compounds.

<u>Goal</u>: constrain SOM dynamics •Radiocarbon (open system with isotope tracer) •Nutrient cycling (~closed system)

Pitfall 3: Changing Input Rates (Pool Size)

Modeled by changing inputs at 1950

