The role of eddy covariance in determining carbon fluxes in pasture soils

Dave Campbell, Louis Schipper Susanna Rutledge, Paul Mudge & Dirk Wallace Earth and Ocean Sciences University of Waikato

WAIKATC

Outline

- Context: observed C losses in NZ pastoral soils
- Measuring CO₂ exchanges with eddy covariance and chambers
- Paddock-scale annual C budgets (dairying)
- Quantify effects of individual farm management practices on CO₂ exchanges
- State of the balance sheet
- Non-biological C loss

Soil C changes under pastoral agriculture

- C losses of ≈1 t ha y⁻¹ after 20 years for dairy but gains for hill country (Schipper et al. (2007) Global Change Biology, 13: 1138-1144)
- What land management practices contribute to C loss, and at what rate?

What factors drive changes in soil C?

C exchanges in a pasture system using EC

- Annual C budgets
 - Hectare scales
 - 1/2 hr to multi-year
- Biophysical drivers
 - Model formulation & testing

C budget 1: dairy farm on peat

C budget 2: dairy farm on mineral Soils

Pasture NEE in a drought year

Paul Mudge MSc thesis

Partitioned & total NEE

Paddock-scale C budget

Units kg C ha⁻¹

Paul Mudge MSc thesis

How do management practices alter C fluxes?

1. Cultivation in a summer drought

- 27 January 5 March 2008
- 6 paddocks
 - 3 cultivated
 - 3 pasture
- LI-COR 8100 soil respiration system
- 10 soil respiration sampling collars in each paddock
- Measurements made over period of 39 days

Cultivation trial results

	Cultivated	Pasture
Respiration (C losses, chamber)	38.4	37.1
Gross Primary Production (EC)	_	14.7
NEE	38.4	22.4
	kg C ha ⁻¹	kg C ha⁻¹
NEE 39 day trial	1496	874
Net ecosystem exchang	Net loss	
But this was during a	622 kg C ha ⁻	

2. Pugging event in winter

Pugging trial results

	Pugged	Control (pasture)
C losses-daily (kg C ha ⁻¹ d ⁻¹)	28.3	33.7
C losses–41 days (kg C ha ⁻¹)	1,161	1,381

3. Strip grazing event on a Waikato peat soil

(2005) Global Change Biology. 11: 607-618.

4. Cultivation during spring

Soils: Te Kowhai

Horotiu

Spring cultivation trial results

	Te Kowhai	Horotiu
	kg C ha ⁻¹ d ⁻¹	kg C ha ^{−1} d ^{−1}
Respiration	71.2	43.6
GPP (EC)	—	—
NEE	71.2	43.6
	kg C ha⁻¹	kg C ha⁻¹
NEE 34 day trial	2420	1484

Net ecosystem exchange (NEE) loss /gain

	Change in soil C	
	tC ha ⁻¹ yr ⁻¹	
DOC	0.15-1.5	Balance
leaching	(see Ghani et al poster)	sheets?
Urine priming	??	
		Effect of soil
<u>Cultivation</u>		
Dry	1-2	type
Moist	2-4	
Grazing intensity	0.3	Interannual variability
Pugging	0	
Erosion		Still many
Flat	XX	unknowns!
Hill	XX	
XXX	XX	

Photodegradation – an overlooked pathway for C loss?

- 20% of annual C losses due to photodegradation in bare peatland
- 60% of dry season
 CO₂ flux due to photodegradation in California

Rutledge et al. (in press) Global Change Biology

Acknowledgements

- Funding & support
 –FRST
 –DairyNZ
 - -MAF
 - –University of Waikato

