Nitrous oxide emission factor from animal dung on different soils in New Zealand

Jiafa Luo, Tony van der Weerden, Coby Hoogendoorn, Cecile de Klein, *AgResearch, New Zealand*

Gerald Rys, MAF Policy, New Zealand

Farming, Food and Health. First

Te Ahuwhenua, Te Kai me te Whai Ora. Tuatahi

Excreta-N is the major source of N₂O emissions from grazed pastures

 N_2O

 N_2O

N₂O production is due to soil processes - denitrification and nitrification

Emission factor (EF3) = percentage of excreta N emitted as N_2O

Introduction

- Previous studies have confirmed a New Zealand specific
 N₂O emission factor (EF3) of 1% from animal urine
- The IPCC default EF3 value is 2% for animal excreta
- Limited studies have suggested that EF3 for cow dung ranges between 0.1 and 0.5%, while N₂O emissions from sheep dung are (close to) zero

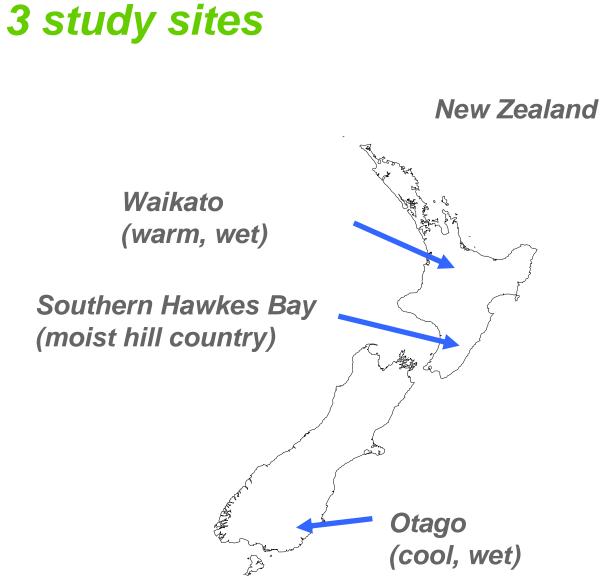
Introduction

- Currently New Zealand-specific EF3 of 1% is applied to animal urine and also to dung
- A disaggregation of EF3 between deposited urine N and dung N would result in more accurate N₂O inventories

Introduction

Forms of N differ in excreta from different animals

agresearc


Study hypothesis

 EF3 from different animal and excreta types decreases as follows:

Cattle urine > cattle dung > sheep dung

Study design

- Plot trial
- Dung: Fresh cattle and sheep dung
- Urine: Fresh dairy cow urine
- Trial on six soils across three regions of New Zealand

Study design

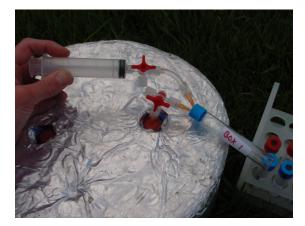
- Plot trial
- Dung: Fresh dairy cow, beef cow and sheep dung
- Cattle urine: Fresh dairy cow urine
- Trial on six soils across three regions of New Zealand
- Each region included both a freely- and a poorly-drained soil

aoresear

Treatments were applied in autumn and spring 2008

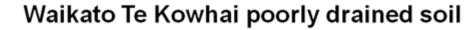
Materials and methods

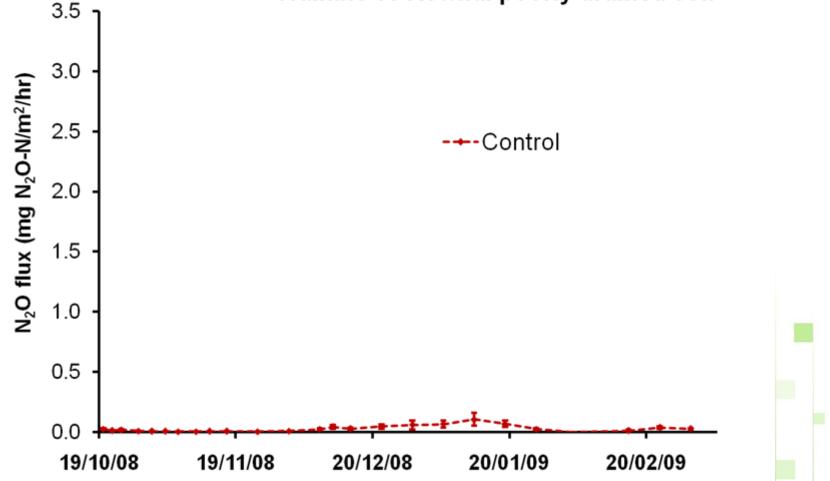
Treatment application

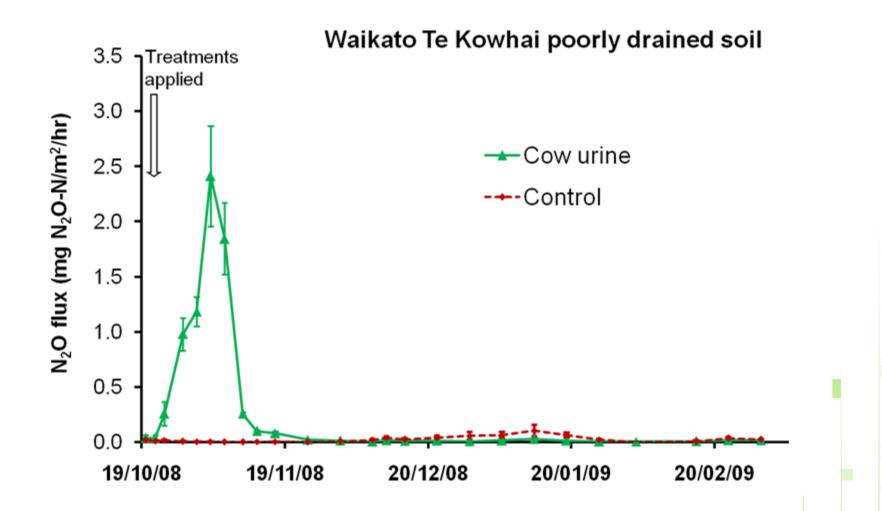

Materials and methods

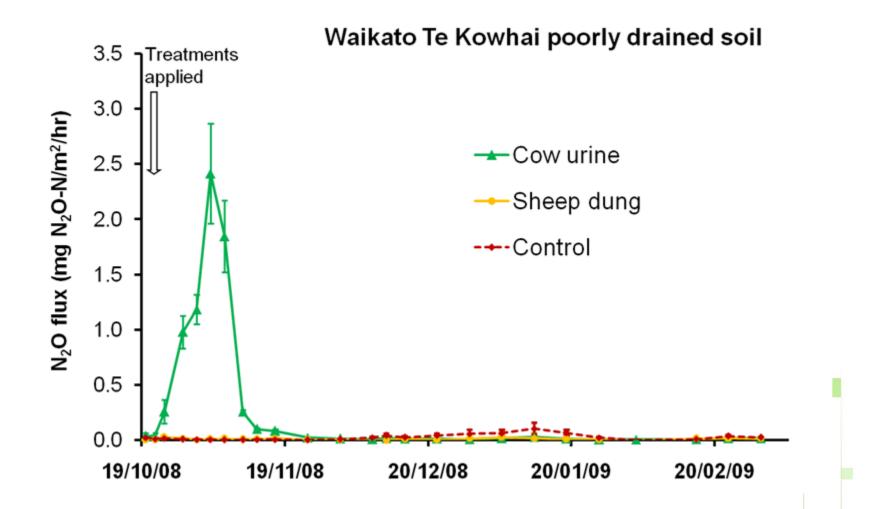
Soil chambers were used to measure N₂O emissions

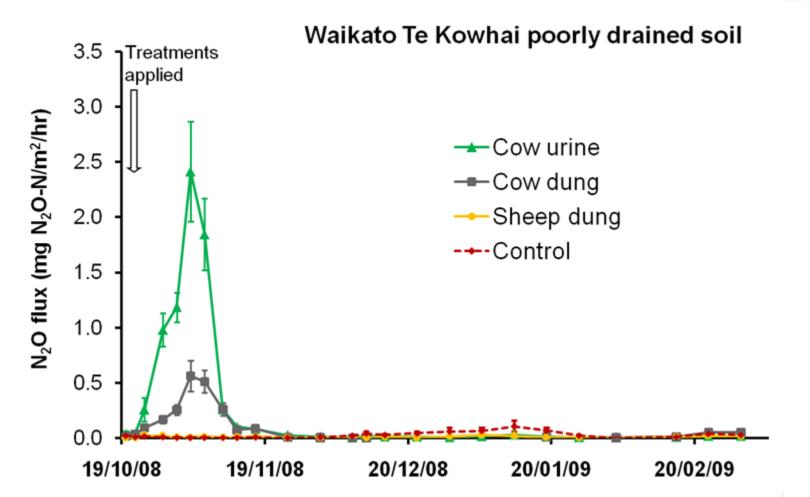
Manual sampling




Materials and methods


- Soil chambers were used to measure N₂O emissions
- Gas samples were taken twice per week for the first month and then once per week until background levels were reached
- Total emissions over the measurement period were calculated
- EF3 values were calculated for each excreta type
 EF3 = 100% × [N₂O (urine/dung) N₂O (control)]/applied N





- The N₂O fluxes in the Controls were very low in all six soils
- N₂O fluxes from urine and dung treatments returned to background (control) level within 2-6 months
- Dairy cow urine treatments always resulted in the largest N₂O fluxes from all 6 soils, followed by dung and control treatments

EF3 % (SEM in bracket)

Autumn-winter season (May 08 – Sep 08)

Soil		Waikat	0	Hawkes Bay Otago					
	Cow urine	Cattle dung	Sheep dung	Cow urine	Cattle dung	Sheep dung	Cow urine	Cattle dung	Sheep dung
Free- draining	0.10 (0.05)	0.03 (0.02)	0.03 (0.05)	0.14 (0.04)	0.05 (0.03)	-0.01 (0.06)	0.91 (0.12)	0.17 (0.03)	0.12 (0.05)
Poor- draining	0.50 (0.09)	0.07 (0.03)	0.04 (0.05)	0.07 (0.04)	0.01 (0.02)	0.01 (0.06)	0.49 (0.08)	0.00 (0.01)	0.03 (0.05)

Urine EF3 was higher than Dung EF3

EF3 % (SEM in bracket)

Autumn-winter season (May 08 – Sep 08)

Soil		Waikat	D	Hawkes Bay Otago		ay Otago			
	Cow urine	Cattle dung	Sheep dung	Cow urine	Cattle dung	Sheep dung	Cow urine	Cattle dung	Sheep dung
Free- draining	0.10 (0.05)	0.03 (0.02)	0.03 (0.05)	0.14 (0.04)	0.05 (0.03)	-0.01 (0.06)	0.91 (0.12)	0.17 (0.03)	0.12 (0.05)
Poor- draining	0.50 (0.09)	0.07 (0.03)	0.04 (0.05)	0.07 0.04)	0.01 (0.02)	0.01 (0.06)	0.49 (0.08)	0.00 (0.01)	0.03 (0.05)

- In the Waikato Urine EF3 from the poorly drained soils was higher than that of the well drained soils
- However, the reverse was found in Otago and Hawkes Bay

EF3 % (SEM in bracket)

Autumn-winter season (May 08 – Sep 08)

Soil		Waikat	0	Hawkes Bay Otago		Hawkes			
	Cow urine	Cattle dung	Sheep dung	Cow urine	Cattle dung	Sheep dung	Cow urine	Cattle dung	Sheep dung
Free- draining	0.10 (0.05)	0.03 (0.02)	0.03 (0.05)	0.14 (0.04)	0.05 (0.03)	-0.01 (0.06)	0.91 (0.12)	0.17 (0.03)	0.12 (0.05)
Poor- draining	0.50 (0.09)	0.07 (0.03)	0.04 (0.05)	0.07 (0.04)	0.01 (0.02)	0.01 (0.06)	0.49 (0.08)	0.00 (0.01)	0.03 (0.05)

There was no significant difference in EF3 between the cattle dung and sheep dung

Average EF3 (%) using data across all three regions and both soil drainage classes

	Excreta	Cow urine	Cattle dung	Sheep dung	
<	Autumn- winter	0.30 (0.03)	0.05 (0.01)	0.04 (0.04)	>
<	Spring- summer	0.26 (0.04)	0.04 (0.02)	-0.02 (0.05)	
	Average	0.29 (0.07)	0.04 (0.02)	0.01 (0.05)	

- EF3 values for each excreta type were generally similar in both seasons
- The difference in EF3 between the cattle dung and sheep dung was not statistically significant

Average EF3 (%) using data across all three regions and both soil drainage classes

Excreta	Cow urine	Cattle dung	Sheep dung
Autumn- winter	0.30 (0.03)	0.05 (0.01)	0.04 (0.04)
Spring- summer	0.26 (0.04)	0.04 (0.02)	-0.02 (0.05)
Average	0.29 (0.07)	0.04 (0.02)	0.01 (0.05)

EF3 decreased as follows:

cow urine > cow dung = sheep dung

 Differences were primarily due to higher readily available N in urine compared to dung (supported by simultaneous soil mineral N analyses)

Average EF3 (%) using data across all three regions and both soil drainage classes

Excreta	Cow urine	Cattle dung	Sheep dung
Autumn- winter	0.30 (0.03)	0.05 (0.01)	0.04 (0.04)
Spring- summer	0.26 (0.04)	0.04 (0.02)	-0.02 (0.05)
Average	0.29 (0.07)	0.04 (0.02)	0.01 (0.05)

Previous0.90.180.00MAF trials	
-------------------------------	--

EF3 for cattle urine and dung in this study was lower than the average from previous MAF trials

- The lower EF3 for urine in this study could be due to relatively dry conditions during the current two study periods (supported by simultaneous soil moisture analyses)
- Similar relativity might be expected for dung
- This suggests that the EF3 from dung obtained from this study might have been lower than expected

Conclusions

- The dung EF3 was less than one fifth of that of the urine EF3
- EF3 values were mainly affected by differences in soil moisture and climatic conditions between the regions
- Soil drainage class did not have a consistent effect on EF3 values for dung

Conclusions

- The average EF3 for cow urine, cow dung and sheep dung were estimated at 0.29%, 0.04% and 0.01% of excreta N applied, respectively
- These results support a disaggregation of EF3 between animal urine and dung to improve accuracy of the N₂O inventory

