Assessing the uncertainty of a change in methane emissions from cattle at the herd scale with various micrometeorological methods

Mei Bai^A, Johannes Laubach^B, Frances A. Phillips^A, Cesar S. Pinares-Patiño^C, German Molano^C, Edgar A. Cárdenas Rocha^{C,D}, David W. T. Griffith^A

 ^ACentre for Atmospheric Chemistry, University of Wollongong, Wollongong NSW 2522, Australia
^BLandcare Research, P.O. Box 40, Lincoln 7640, New Zealand
^CAgResearch, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand
^DUniversidad Nacional de Colombia, 30th Av. 45-08, Bogotá, Colombia

University of Wollongong

Introduction

- 9th-28th Nov 2008 at Aorangi Farm, Palmerston North, NZ
- 6 methodologies to measure CH₄ emissions from cattle
- 5 herd-scale method, 1 animal-scale method
- 61 steers
- 3 levels of CH₄ emissions created by:
- 3 feed intake levels

Experiment design

- 61 steers
- Area 55 m x 80 m
- 3 weeks
- Each week, feed intake increased: 4.26 kg DMI head⁻¹ day⁻¹
 6.71 kg DMI head⁻¹ day⁻¹
 9.29 kg DMI head⁻¹ day⁻¹

Measurement Methods:

Method	Gas Instrumentation	Institution
1.Mass-balance (IHF)	Los Gatos CH ₄ analyser, 7 intakes	LCR
2.BLS* from profile	Los Gatos CH ₄ analyser, 7 intakes	LCR
3. BLS from 4 paths	Open-path Boreal Laser GasFinder MC	LCR
4. BLS from 2 paths	Open-path FTIR	UoW
5. External tracer/CH ₄ ratio (herd scale)	tracer release canisters on cattle, open- path FTIR	UoW
6. SF ₆ /CH ₄ tracer ratio (animal scale)	SF ₆ release capsules in rumen, yokes on cattle, daily GC analysis	AgRes

*BLS: Backward-Lagrangian stochastic. It is a micrometeorological model of dispersion which allows to estimate the source strength given an concentration measurement - WindTrax model

Profile mast method - Method 1,2

Instruments

- Profile mast
- Background intakes
- Los Gatos CH₄ analyser

Methods

- BLS Profile
- IHF Integrated horizontal flux (mass budget)

Landcare Research Manaaki Whenua

Method 3- Open-path Laser with BLS

Instrumentation

• 4 x Open-path Boreal Laser "GasFinder"

Method

• BLS-GF

Method 4, 5

Instrumentation

• 2 x Open-path FTIR spectrometers

Methods

- BLS-FTIR
- Tracer ratio

Q_{CH4} = enhanced CH₄/enhanced N₂O * N₂O release rate

Method 6 – SF₆ tracer method

SF₆ Tracer Ratio Method (animal-scale)

Weekly mean diurnal variation of CH₄ emission

Weekly means based on diurnal variations

BLS: Sensitivity to source area geometry

Sensitivity of IHF and BLS results to source area assumption

Summary 1

- Successfully compared the 6 methods within 3 weeks
- Clear diurnal variation: peak emission in the afternoon and low emission in the morning
- Clear increase pattern with the feeding levels increase from week1 to week3

Summary 2

- SF₆ (animal-scale) method, week-to-week emission changes were 27 and 33 %
- BLS-FTIR and N₂O-TR detected smaller yet still significant week-to-week changes
- BLS-GF detected the 30-% changes but with larger uncertainty:
- biggest issue for open-path methods is accuracy of concentration differences
- IHF and BLS (profile mast) failed to detect the first weekly change
- biggest issue for profile-mast methods is sensitivity to source area definition. This can be reduced by larger source-sensor distance – at cost of smaller range of acceptable wind directions
- N₂O-tracer method was not affected by the source area
- robust quality control criteria are crucial

Thanks to support crew:

Funded by: New Zealand's Foundation for Research, Science and Technology (FRST) ARC linkage and the Department of Climate Change, Australia The team (& support crew)

CH₄ Emissions and Feed Intake

(Suggestion – may not have time)

	Feed Intake kg DMI head ⁻¹ day ⁻¹	SF6 g CH₄ kg DMI ⁻¹	FTIR Tracer g CH ₄ kg DMI ⁻¹	BLS FTIR g CH ₄ kg DMI ⁻¹	BLS Laser g CH ₄ kg DMI ⁻¹	BLS profile g CH ₄ kg DMI ⁻¹	IHF Profile g CH ₄ kg DMI ⁻¹
Week 1	4.26	16.62	19.55	20.56	13.63	26.66	28.58
Week 2	6.71	14.27	14.27	16.02	14.49	18.19	17.84
Week 3	9.29	12.82	12.07	13.06	13.65	17.61	17.34

Methodology sensitivity

(draft only - still needs lots of thought)

- Instrument Precision: determine the enhanced CH₄ concentrations over local background concentration
 - OP-FTIR 5ppbv
 - Laser ???
 - Los Gatos ???
- OP-FTIR Tracer method:
 - Precision in measuring tracer gas concentration above local background
 - Uncertainty in tracer flow rate
 - Improved design in gas release mechanism
- SF6 tracer method
 - Uncertainty in SF₆ tracer flow rate
- BLS:
 - Assumes a uniform source area
 - Sensitivity to source area geometry