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N,O emission is highly variable due to the spatial
and temporary coincidence of three drivers
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The three drivers are driven by a number of
natural and management factors.
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Biogeochemical concepts were utilized to build a
process-based model
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The DNDC Model
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Uncertainty of model performance
comes from two sources:

(1) Scientific structure (processes
and parameterization);

(2) Input data.



Defects in scientific structure of
models can be diagnosed through
validation tests against observed
patterns and magnitudes of N,O

fluxes.



Pattern tests are usually focused on
the characteristic episodes of N,O
emissions.



N,O emission is stimulated by rainfall events

N20O + N2 Fluxes from a Grassland at Berkshire, England, May 28-June
28,1981 (Field data from Ryden 1983)
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N,O emission is stimulated by freezing/thawing events
(Field data from Flessa et al. 1995)

Observed and Modeled N20 fluxes from a crop field in Germany, 1992-1993
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N,O emission is stimulated by flooding/draining events

Observed and Modeled CH4 and N20 Fluxes from a Paddy Rice Field at Wu County, Jlansu -
Province, China in 1997 (Field data from Zheng et al., 1999)
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N,O emission is stimulated by fertilizing events

Observed and modeled N20 fluxes from a grassland (NPK treatment) at Cowpark, Edinburgh, Scotland in 2002-2003
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Deflection of modeled N,O emission pattern can
be located by a sequence of validation tests on

- crop growth/yield,
- soll climate,

- soil C dynamics, and

- N fluxes.




Measured and modeled crop biomass, soil moisture, soil ammonium and nitrate,
and N,O emissions in a farmland at Arrou, France in 1998 and 1999
(Field data from Hénault et al. 2005)
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Magnitude tests are usually based
on large samples of comparisons
between modeled and measured
results.



Observed and DNDC-Modeled Annual N,O Fluxes for 69 Agricultural Sites in
U.S., Canada, U.K., Germany, Belgium, France, Swiss, New Zealand, China,
Japan, and Costa Rica

Modeled N20 flux, kg N/halyear .

Observed N20O flux, kg N/hafyear



A summarized version of DNDC with no processes requiring only 9 input
parameters
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Definitions F: annual soil N20 flux, kg N'ha/yr;

R : fertilizer application rate, kg N/ha/yr;

Ay background N20 flux coefficients, kg N/ha/yr:
Bo.o: saturated N20O flux coefficients, kg N/ha/yr;
K, rate coefficients;

C: SOC content in top so1l, kg C/kg soil;

CN: crop demand for N. kg N/'ha:

LU: land-use (upland crop 1; paddy rice 2; grassland/pasture 3)
M: manure application rate, kg C/ha;

T: mean annual air temperature, °C;

P: total annual precipitation, mm;

CLAY: soil clay fraction;

PH: soil pH




A global dataset of measured N,O fluxes from 434
agricultural fields provided by Lex Bouwman

Avallable input information for the 434 cases:

- Annual mean temperature;
- Annual precipitation;

- Location;

- Soll texture;

- SOC content;

- Soll pH;

- Crop type;

- Synthetic fertilizer application rate;
- Manure application rate.



Observed and Summarized DNDC-Modeled N20O Fluxes for 434 Agricultural
Sites Worldwide (Field datasets from Lex Bouwman)
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Statistical tools serve comparison between
measured and modeled N,O fluxes

Modeling efficiency (E)

A measure of the degree to which
modeled values matches with
measured values (-8 — 1)
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A measure of the degree to which

modeled values differs from
measured values (0 —-1)
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Correlation coefficient

(R)

A measure of how well future
outcomes are likely to be predicted
by the model (0 - 1)
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Comparison between measured and modeled N,O
emissions with a matrix of statistical tools

69 cases 434 cases
(modeled with (modeled with
DNDC) summarized DNDC)
Statistic measure Measured | Modeled | Measured | Modeled
fluxes fluxes fluxes fluxes
Root mean square error (RSQE), 10 30
kg N/halyr
Modeling efficiency (E) 0.82 0.56
Theil’s inequality (U) 0.20 0.31
Correlation coefficient (R?) 0.82 0.61
Average, kg N/halyr 11.86 12.06 7.51 7.40




Input data for DNDC simulation

1. Climate: - Daily max and min air temperature,
- Precipitation;
- Atmospheric N deposition;
2. Soll: - Bulk density;
- Texture (clay fraction);
- Total organic C content;
- pH;
3. Management: - Crop type and rotation;
- Tillage,;
- Irrigation;
- Fertilization:
- Manure amendment;
- Grazing etc.



N20 flux, kg N/ha/yr .
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Sensitivity Tests for Identifying the Most Sensitive Factors Affecting N20O
Emissions from a Winter Wheat Field in Rothamsted, the U.K.

Impacts of Variations in Input Parameters on N20 Emission from a Winter Wheat Field in
Rothamsted, UK
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N20 flux, kg N/halyr .
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Sensitivity Tests for Identifying the Most Sensitive Factors Affecting N20O
Emissions from a Rapeseeds Field in Hebei, China

Impacts of Variations in Input Parameters on N20 Emission from a Rapeseeds Field in Hebei,
China
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N20 flux, kg N/halyr .

Sensitivity Tests for Identifying the Most Sensitive Factors Affecting N20O
Emissions from a Corn Field in lowa, the U.S.

IImpacts of Variations in Input Parameters on N20 Emission from a Corn Field in lowa, USA
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Most Sensitive Factors for N,O Prediction

— Soll organic carbon (SOC) content;
— Fertilizer application rate;

— Irrigation

Enhanced database for quantifying uncertainty at regional

scale:
Max SOC Irrigation
A cell ' Min SOC Non-irrigation

Verified fertilizer data

DNDC

Uncert
ainty




Frequency, 1/4000

Modeled N20 fluxes with Monto Carlo and Most Sensitive Factor methods for Grid Cell
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With the enhanced database, DNDC calculates

uncertainty during regional simulations
e - DNDC Model

meteorological data
(daily temp, precip.)

soil properties (max.

and min. SOC, pH,
texture, bulk den.)

crop types &
rotations

farm management

(fert., irrig., manure,

crop residue, ...)

CO,, CH,, N,O
emissions in ranges




DNDC-Modeled Global N,O Emissions from Agricultural Soils
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IPCC and DNDC Estimated Global N20 Emissions from
Agricultural Soils
(IPCC data from Mosier et al. 1998 )
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Top Ten World N,O Emitters
(Accounting for 79% of world total)

Direct N.O emission from agricultural soils

Country (tons N/yr)
China 0.65+£0.17
United States 0.46 £ 0.07
India 0.38 £ 0.05
Russia 0.11 £0.03
Argentina 0.09 £ 0.008
Mexico 0.07 £ 0.02
Canada 0.045 £ 0.01
France 0.037 £ 0.01
Brazil 0.036 £ 0.004
Ukraine 0.035 £ 0.006




Test Alternative Management Practices for Mitigation at
Regional/Global Scale

A change in management
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DNDC estimated

Impacts of precision

fertilization at

national scale for
China (Li & Salas, 2009)

DNDC-modeled crop production in China
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Conclusions

- Uncertainty produced from process-based
model applications can be brought under
control through validation, sensitivity test
and database enhancement;

- With quantified uncertainty, process-
based models will be a powerful tool for
both inventory and mitigation.
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