

Global budgets of CH₄, N₂O: their uncertainties and techniques to measure emissions at regional and country scales

David Fowler, Eiko Nemitz, Debbie Polson, Alan McDonald, Daniela Famulari, Chiara di Marco, Ute Skiba, Mhairi Coyle

Centre for Ecology and Hydrology (CEH) Edinburgh, UK.

MC2 Massey University 18th -20th November 2009

Outline

- Recent trends in global CH₄ and N₂O concentrations and their atmospheric budgets
- Sources and their uncertainty
- Direct measurements of country scale GHG emissions

GLOBAL MEAN RADIATIVE FORCINGS

Methane

Uncertainties in Methane emissions Tg CH₄ per year

- Wetlands
- Rice Agriculture
- Ruminants
- Landfill
- Biomass burning
- Termites
- Gas, coal and industry 85 (90-120)

- 150 (range 100-260)
- 60 (30-112)
- 80 (76-92)
- 30(35-69)
- 40 (14-88)
- 20 (20-30)

Uncertainties in Methane sinks

- Soils 30 (26-34)
- Tropospheric OH 511 (420-511)
- Stratospheric loss 40 (30-40)

Recent trends in CH₄

Why has the rate of change in global CH_4 concentration been so variable?

Global Methane trends

- The trends in global CH₄ since 1990, remain largely unexplained
- Thus sources and sinks for global CH₄ remain a research priority
- There is much to do in validating regional emission estimates measuring fluxes in the main source regions, especially wetlands both high and low latitude

Modelled zonal mean wetland area and methane emissions

Nitrous Oxide

- Radiatively active
- Stratospheric Ozone depleting gas

View of the South Pole from NASA's TOMS (Total Ozone Mapping Spectrometer) satellite. Blue and green indicate relatively large amounts of ozone. Red and yellow mark the "ozone hole", an area of decreased ozone. Credit: NASA

Sciencexpress / www.sciencexpress.org / 27 August 2009 / Page 4 / 10.1126/science.1176985 A. R. Ravishankara,* John S. Daniel, Robert W. Portmann

Long term trends derived from ice cores

CO₂ +40%

CH₄ +160%

N₂O +18%

270 ppb pre-industrial value now 320 ppb

N₂O trend 1980-2006 (AR4)

Centre for

Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCIL

Knowns:

Annual increase

Total

Natural source: (from ice-core data) 8.1 Tg-N y⁻¹

Oceans

Continent $1.4 - 2.6 \text{ Tg-N y}^{-1}$ $5.5 - 6.7 \text{ Tg-N y}^{-1}$

Anthropogenic sources: 3.6 to 5.1 Tg-N y⁻¹ (by difference)

Sources of N₂O

- Soils, agricultural and natural
- Industry (fertilizer, HNO₃ and nylon production)
- Catalyst equipped cars

A preliminary calculation of greenhouse gas fluxes from some NEU Level 3 sites.

Ecosystem	Site	CO_2	CO _{2eqN2O}	CO _{2eqCH4}	Total GHG
		kg ha ⁻¹ y ⁻¹	kg ha ⁻¹ y ⁻¹	kg ha ⁻¹ y ⁻¹	t ha ⁻¹ y ⁻¹
Forest	FI-Hyy	-6078	117	-246	-6.2
	DK-Sor	-3987^{1}	211	- 96	-3.9
Grassland	UK-EBu	-3788^{2}	5840	42^{3}	2.1
	HU-Bug	-3691	75	6	-3.6
Arable land	FR-Gri	-19114 ²	126	0	-18.9
Wetland	FI_Lom	-800^{1}	42	5000	4.2
	LIK-AMO	-4250	0	61	-4 2

¹Average of measurements for 12 months 08/06 -07/07, ²export of C by harvest (vegetation, animals) is not included,³ CH₄ emissions from sheep are not included. The global warming potential used for N₂O was 298 and for CH₄ 25, over the 100 year time

Skiba et al, Agriculture, Ecosystems and Environment 133 (2009) 139-149

Fig. 7. Fitted response of the emission factor (EF) from fertilizer to soil temperature and WFPS, assuming a monthly rainfall of 50 mm (after Eq. (4)).

C.R. Flechard et al. / Agriculture, Ecosystems and Environment 121 (2007) 135–152 Available online at www.sciencedirect.com

Agriculture, Ecosystems and Environment 121 (2007) 135-152

- Spatial and temporal variability in N₂O emission is very large
- The available data to show that a more complex treatment of N₂O in national inventories is better than the default value at the country scale, is lacking

How good are national CH₄ inventories ?

- UK annual emissions of CO_2 , CH_4 , N_2O
- These are 'bottom up' inventories calculated from activity / emission factor data, for N₂O almost all country data is provided by the assumption of default (1% N applied)
- There is no systematic validation

Validation methods available for country scale emissions

• Tall towers (~200m)

(Including Flux towers)

- Aircraft sampling to measure the mass budget of GHG over a region
- Satellite remote sensing

Tall Towers

 Long term, high precision measurements of CO₂, CH₄, N₂O, CO, NO_x, etc and inverse modelling to deduce regional surfaceatmosphere fluxes.

ICOS will make the existing network denser and more accurate (John Grace *et al* Edinburgh Univ)

- Principle = the atmosphere is a fast but incomplete mixer of surface sources and sinks
- High accuracy, long-term monitoring of CO₂ concentrations at atmospheric stations, inversion to estimate sources and sinks using atmospheric models

Innovative
 methodologies using
 tracers and isotopes to
 attribute CO₂ sources to
 fossil, oceanic, and
 terrestrial processes

Angus Tall tower, CO₂ signal

Funded through Carboeurope-IP and DEFRA/CEH, John Moncrieff, Rob Clement, Paul Parrish

Modelled country scale fluxes for Scotland from concentrations at Mace head and in Eastern Scotland (Angus)

Centre for

Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

Figure 10: [Incomplete plot: will be adding a monthly representative box plots at the bottom to illustrate the amount of data that the monthly sums are based on.] Calculated net regional exchange (mass) estimates for Scotland, with 95% confidence intervals.

Parrish et al (in prep)

Boundary layer budget at the country scale using aircraft

Estimating Annual Emissions – Box Technique

•
$$F_{emit} = F_{out} - F_{in} - F_{ent}$$

• $F_{in} = \iint u_{in}(y,z)c(y,z)dydz$
• $F_{out} = \iint u_{out}(y,z)c(y,z)dydz$
• $F_{ent=0}$

- F_{emit} = Flux emitted
- $F_{in} = Flux in$
- $F_{out} = Flux out$
- u = wind speed
- c = concentration

Original emissions

Adjusted emissions

UK Facility Airborne Atmospheric Measurement (FAAM): BAe-146

Flight duration: max. 5:30 hours

Results: NAME Sectorial Emission Adjustment Technique

	CO (kT/y)	CO ₂ (kT/y)	N ₂ O (kT/y)	CH ₄ (kT/y)
NAEI (2003)	2757	572196	130	1933
B92	1900 ± 147	490000 ± 68500	880 ± 456	*8700 ± $\frac{7770}{6870}$
B97	3700 ± 605	470000 ± 117000	540 ± 427	4600 ± 1190
B102	2700 ± 250	410000 ± 93000	620 ± 334	****
B111	*3000 ± 202	*1200000 ± 181000	*930 ± 223	****
B112	1700 ± 292	$620000 \pm \frac{222000}{130000}$	*2200 \pm_{239}^{1260}	9600 ± 3440
B113	2800 ± 847	840000 ± 319888	*2900 ± 893	12000 ± 6910
B118	800 ± 141	650000 ± 87266	320 ± 199	****
B119	1900 ± 102	510000 ± 145000	190 ± 106	****
B126	3300 ± 66	620000 ± 130000	3800 \pm_{3938}^{3760}	9300 ± 2730
B130*	2400 ± 48	420000 ± 82800	200 ± 72	$1900 \pm \frac{661}{231}$
B132*	1600 ± 43	330000 ± 127000	390 ± 64	1600 ± 210
B134	4700 ± 167	510000 ± 75200	320 ± 186	6500 $\pm \frac{4070}{3510}$
B136	2900 ± 334	580000 ± 246000	620 ± 532	*2800 \pm_{1390}^{1570}
AVERAGE	2400 ± 226	$560000 \pm {}^{139000}_{133000}$	350 ± 208	$4000 \pm_{1290}^{1400}$

Summary of Annual Emissions Estimates (kt yr⁻¹)

	СО	CO ₂	N ₂ O	CH ₄
UK Inventory	2,757	572,196	130	1,933
Ireland Inventory	239	43,469	31	607
NAME	2,400 ± 226	$560,000 \pm \begin{array}{c} 139,000 \\ 133,000 \end{array}$	350 ± 208	4,000 ± $^{1400}_{1290}$
Box Approach	2,700 ± 898	670,000 ±294,000	310 ± 217	4,200 ± 2,130

Remote sensing

 Satellite remote sensing provides opportunities to deduce regional or continental scale GHG fluxes

SCIAMACHY methane (CH4) column Scology & Hydrology

SCIAMACHY CH4: China & India

Irology Isearch council

Methane SCIAMACHY (WFMDv1/CT) 2003

- Three years of SCIAMACHY $\rm CO_2$ and $\rm CH_4$ retrievals (2003-2005) have been analysed
- CO₂ (WFMDv1.0; Schneising et al., ACP, 2008a):
 - Reasonable to good agreement with NOAA's CarbonTracker (annual increase, seasonal cycle NH, regional pattern); retrieved variability higher
 - Strong indications for up to several ppm error due to subvisual cirrus (e.g., seasonal cycle SH)
 - Advanced retrieval algorithm under development
- CH₄ (WFMDv1.0 Schneising et al., ACPD, 2008b; v1.1):
 - Good agreement with TM5/JRC except tropics (inversion ongoing at JRC)
 - 2003-2005 data reprocessed (v1.1) using new spectroscopic H_2O and CH_4 line parameters (see Frankenberg et al., GRL, 2008)
 - Analysis ongoing; Preliminary conclusions: Qualitatively we confirm the findings of Frankenberg et al. (e.g. lower tropical methane with new spectroscopy)

Conclusions

- Given the importance of GHG emissions for global climate, it is surprising that systematic validation of national emissions is not a requirement
- Methods for validation are reasonably well advanced, and a range of techniques need to be used
- Tall towers, with flux measurements and inverse modelling appear to provide the most cost effective approach
- Aircraft and remote sensing from satellite are also needed to aid interpretation and for global coverage respectively