



## Global Research Alliance Modelling Platform (GRAMP): An open web platform for modelling greenhouse gas emissions from terrestrial ecosystems

<u>Jagadeesh B. Yeluripati</u><sup>1</sup>, Agustin del Prado<sup>3</sup>, Bob Rees<sup>4</sup>, Changsheng Li<sup>5</sup>, Dave Chadwick<sup>6</sup>, Emma Tilston<sup>4</sup>, Kairsty Topp<sup>4</sup>, Laura Cardenas<sup>2</sup>, Pete Ingraham<sup>7</sup>, Sarah Gilhespy<sup>2</sup>, Steven Anthony<sup>8</sup>, Sylvia H. Vetter<sup>1</sup>, Tom Misselbrook<sup>2</sup>, William Salas<sup>7</sup> and Pete Smith<sup>1</sup>

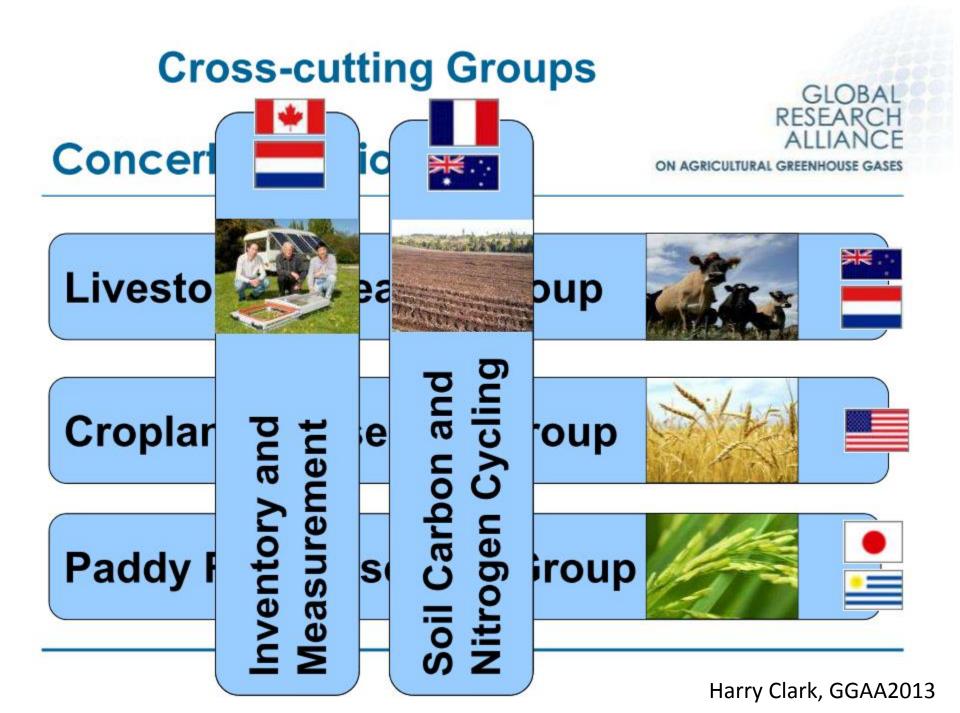
Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, England, UK.
3.BC3, Basque Centre for Climate Change, Bilbao, Spain
4.Crop & Soil Systems, SRUC Edinburgh Campus, Edinburgh, Scotland, UK
5.Institute for the Study of Earth, Oceans, and Space; University of New Hampshire, Durham, New Hampshire, USA
6. School of Environment, Natural Resources and Geography (SENRGY), Environment Centre Wales, Bangor University, Bangor, Wales, UK
7.Applied GeoSolutions, Durham, New Hampshire, USA
8.Soil, Crops and Water, ADAS Group Ltd, Pendeford Business Park, Wolverhampton, England, UK





# Outline

- 1. What is GRA?
- 2. Motivation for GRAMP
- 3. Aim and scope of GRAMP
- 4. GRAMP platform
- 5. A pilot study with DNDC
- 6. Conclusion


1. Global Research Alliance on Agriculture Greenhouse Gas Emissions

Launched December 2009 in the margins of the United Nations Climate Change Conference in Copenhagen, Denmark.

Aim: Find ways to grow more food without growing greenhouse gas emissions

- Improve understanding, measurement & estimation of agricultural emissions.
- Find ways to reduce emissions intensity of agricultural production systems and increase potential for soil carbon sequestration, while enhancing food security.
- Improve farmer access to agricultural mitigation technologies & best practices.
- Membership is voluntary with no funding obligations.

www.globalresearchalliance.org



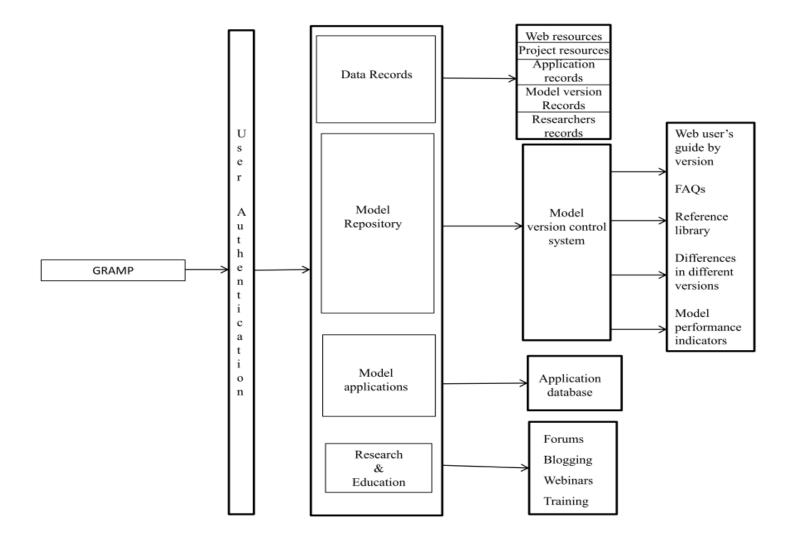
➤ C & N process-based models are important tools in prediction and reporting of GHG emissions and soil C stocks.

➤There are already several models that can address the questions related to C & N cycling and GHG emissions from soils Ex : DNDC, DAYCENT, COUP, ECOSSE. Roth C etc.,

➤There are about 4000 mathematical models in the field of ecology and environmental sciences (Jøergensen et al.,1996). All of these models represent a large collection of scientific knowledge and experience about structure, function and behaviour of ecosystems.

> The biggest challenge is to unify these models and use them at different spatial and temporal scales, rather than to develop new models (Rotmans, 2009).

➤To create an open web-platform with existing data and prior knowledge, in consort with endusers, with every stage open to critical review and revision to improve the predictions of soil C & N cycling in agro-ecosystems in the context of climate change.


Establish a vibrant network of specialist researchers, model developers and users who can work together, to examine strategically <u>what the various models on the market can deliver in</u> <u>accounting for the effect of ecosystem management on GHG emissions</u>.

> Allow network members to exchange information, experience and data and provide a forum for model development for future needs.

> Creating a virtual labs with version control systems, blogging, Webinars, forums with more interactive tools for easy exchange of ideas and expertise across the world.

 $\succ$ Linking up a network of experimental sites across the world.

### 4. GRAMP platform



A schematic representation of the GRAMP network

### Uses:

- 1. Researchers working on model development
- 2. Researchers using models for various outputs
- 3. Students who want to be trained in ecosystem modelling
- 4. Researchers interested in policy making, based on modelling outcomes.



Content and database management system:

GRAMP will allow users to link databases for use by the GRAMP community.

> The GRAMP platform contains a content management system and a database system which are searchable by region, crop etc.

➢ It also contains a web-GIS linked mapping system with a reference library, a database system and training materials (case studies, demos, videos).

### Model repository :

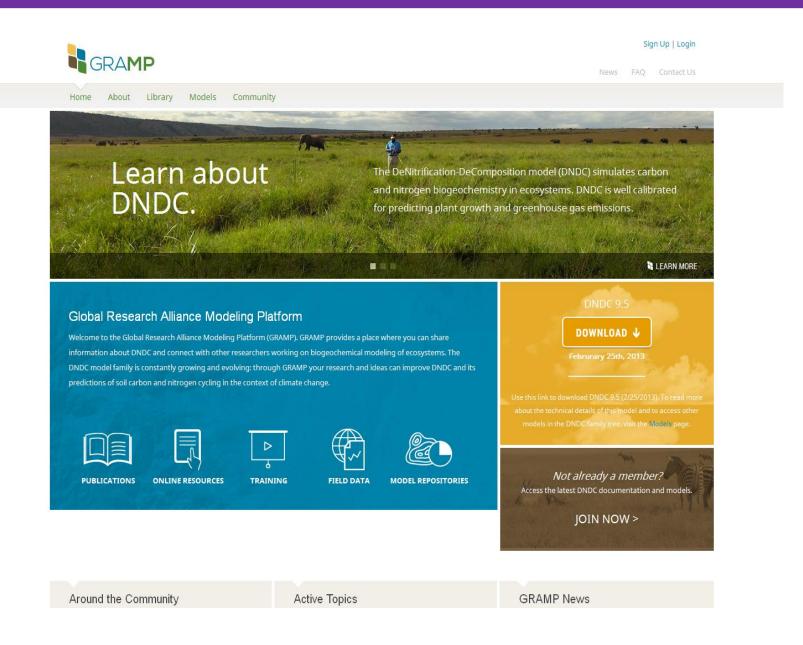
> The repository uses version-control tools. This will also provide version-specific documentation, which is easily accessible, complete, standardized, mutually comparable and transferable to different applications.

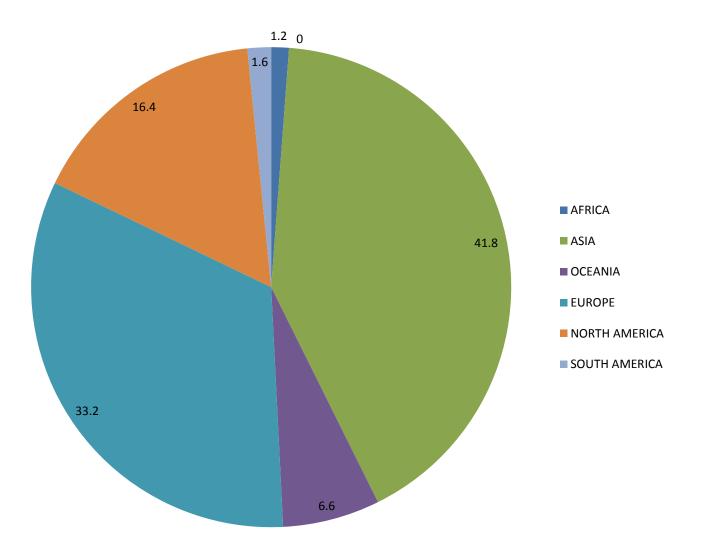
### Model application:

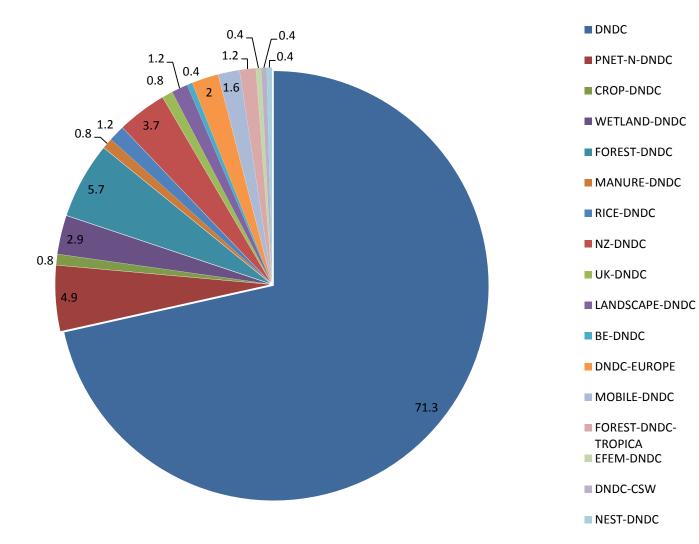
Model performance with different model versions is documented in this category. Different statistical performance indicators are used to compare the performance of different versions of model.

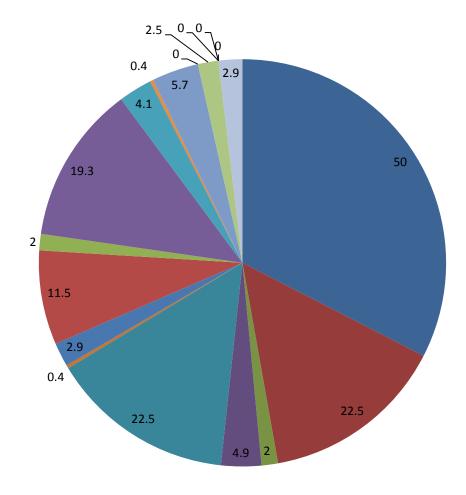


### *Research & education:*


> Provides the training manuals, videos, tutorials for new users and provides FAQs.

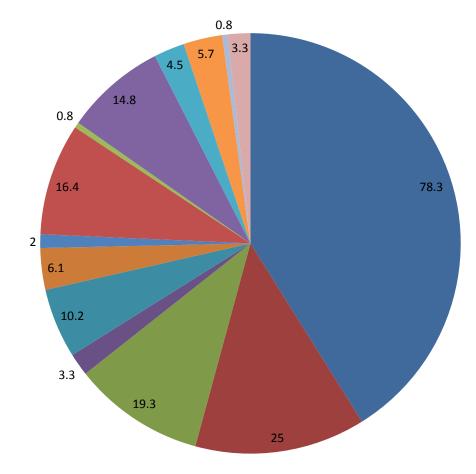

> Users are allowed to interact in the forums and raise questions and get help from worldwide colleagues to solve questions


> Tools are provided for blogging, which allow experienced users, developers and eminent scientists in this field to communicate with the audience.


GRAMP also has the capabilities to organize Webinars, which allow scientists across the world to attend web-based seminars.

### 3. GRAMP platform





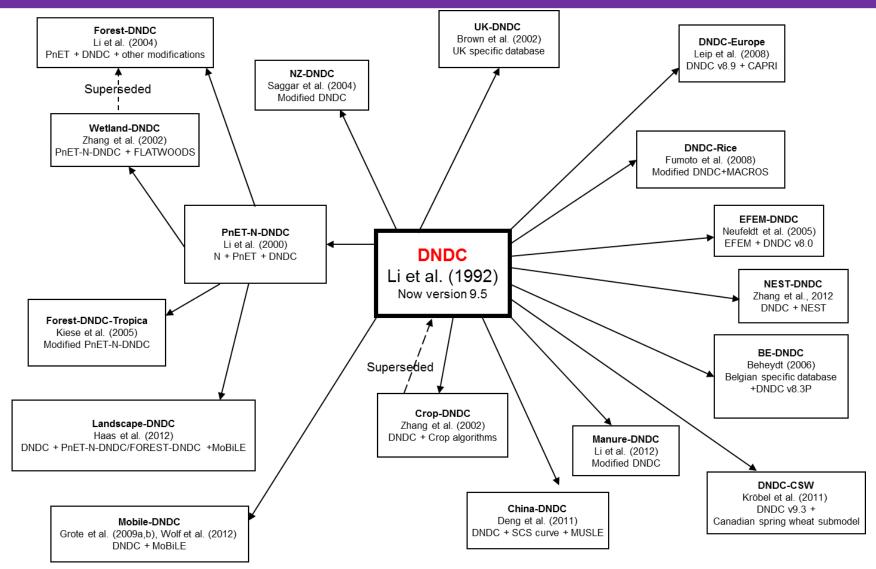





■ AGRICULTURE - CROPLANDS AGRICULTURE - GRASSLAND AGRICULTURE - DRYLANDS ■ AGRICULTURE - UPLANDS ■ AGRICULTURE - PADDY FIELDS AGRICULTURE - HORTICULTURE ■ AGRICULTURE - BIOENERGY ■ AGRICULTURE - LIVESTOCK FORESTRY - BOREAL FORESTRY - TEMPERATE FORESTRY - TROPICAL FORESTRY – ALPINE WETLANDS - NATURAL WETLANDS - CONSTRUCTED AQUATIC - RIVER AQUATIC - LAKE AQUATIC - ESTUARY AQUATIC - MARINE

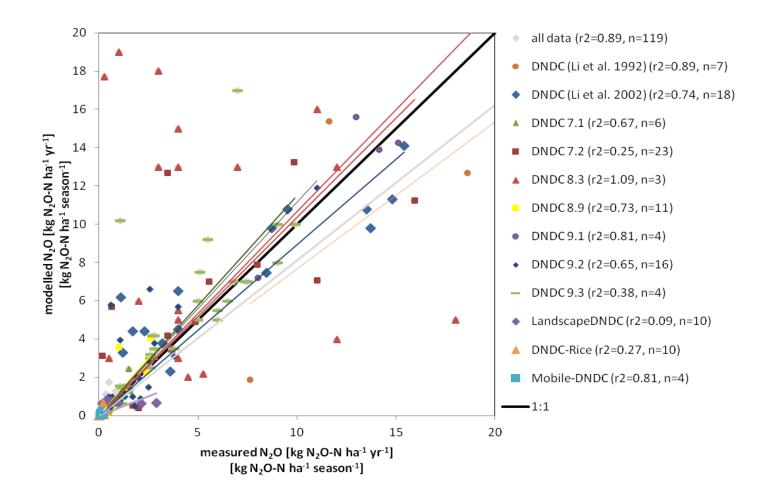
PEATLAND AND BOGS





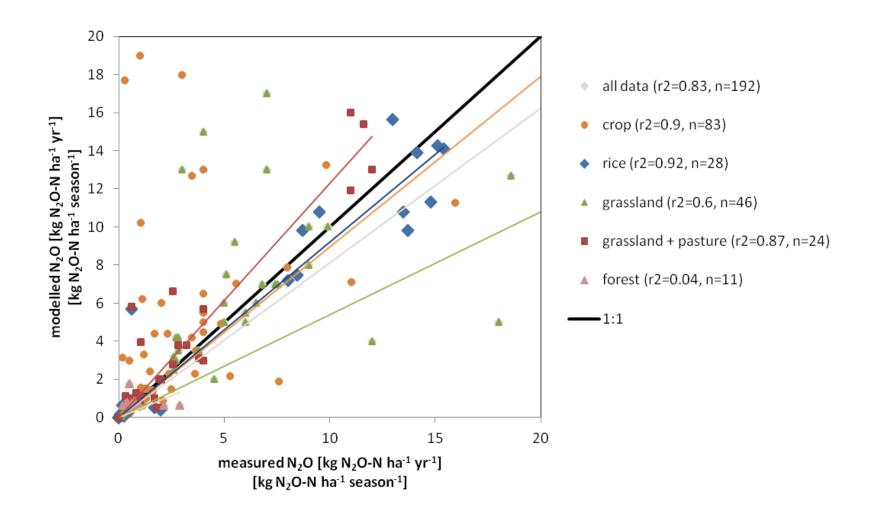

| No. | Name                | Description                                                 | Percent of Papers |
|-----|---------------------|-------------------------------------------------------------|-------------------|
| 1   |                     | Detailed description and testing of new algorithms for      |                   |
|     |                     | improved process representation.                            |                   |
|     | Development,        |                                                             |                   |
|     | integration and     |                                                             |                   |
|     | testing             |                                                             | 24.6              |
| 2   |                     | Comparison of model outputs with measured fluxes at plot    |                   |
|     |                     | and field scale for verification and calibration of the     |                   |
|     |                     | model parameters.                                           |                   |
|     | Measurement and     |                                                             |                   |
|     | verification        |                                                             | 57.0              |
| 3   |                     | Comparison of the abilities of different models or model    |                   |
|     |                     | versions to reproduce measured fluxes                       |                   |
|     | Inter comparison    |                                                             | 15.6              |
| 4   |                     | Analysis of the sensitivity of model outputs to varying the |                   |
|     |                     | scale and range of input data and internal model            |                   |
|     |                     | parameters.                                                 |                   |
|     | Sensitivity and     |                                                             |                   |
|     | uncertainty         |                                                             | 26.6              |
| 5   |                     | Application of the model to calculate the impact of, for    |                   |
|     |                     | example, a change in land management or climate change      |                   |
|     |                     | on simulated fluxes.                                        |                   |
|     | Scenario evaluation |                                                             | 33.6              |

| No. | Name                  | Description                                                | Percent of Papers |
|-----|-----------------------|------------------------------------------------------------|-------------------|
| 1   | BASELINE              | Quantification of trace gas fluxes.                        |                   |
|     | CHARACTERISATION      |                                                            | 68.0              |
| 2   | CLIMATE CHANGE        | Quantification of the impact of changing climatic rainfall |                   |
|     | IMPACT                | and temperatures on environment fluxes.                    | 14.3              |
| 3   |                       | Quantification of the impact of land management change     |                   |
|     | LAND MANAGEMENT       | on modelled fluxes, such as the adoption of minimum        |                   |
|     | CHANGE IMPACT         | tillage.                                                   | 35.7              |
| 4   |                       | Quantification of the impact of options for land drainage  |                   |
|     | FLOOD MANAGEMENT      | and flood management on modelled fluxes.                   |                   |
|     | CHANGE IMPACT         |                                                            | 0.0               |
| 5   |                       | Integrated quantification of modelled fluxes, including    |                   |
|     |                       | those associated with upstream agricultural inputs.        |                   |
|     | LIFE CYCLE ASSESSMENT |                                                            | 1.6               |
| 6   |                       | Analysis of the cost effectiveness of land management      |                   |
|     |                       | options to reduce environmental pressures, and the         |                   |
|     |                       | economic optimisation of agricultural production           |                   |
|     | ECONOMIC ASSESSMENT   |                                                            | 5.7               |
| 7   |                       | A new or improved version of a model, a methodology,       |                   |
|     | MODEL, METHOD OR      | or guidance for the application of a model.                |                   |
|     | GUIDANCE              |                                                            | 25.0              |
| 8   |                       | Quantification of the impact of land use change on         |                   |
|     | LAND USE CHANGE       | modelled fluxes, such as the conversion of grassland to    |                   |
|     | IMPACT                | cropland.                                                  | 2.9               |
| 9   |                       | A dataset of model based outputs or improved input data,   |                   |
|     |                       | such as an archive of model simulations for present and    |                   |
|     |                       | future climate, or a new soils dataset for a region.       |                   |
|     | DATASET               |                                                            | 2.0               |

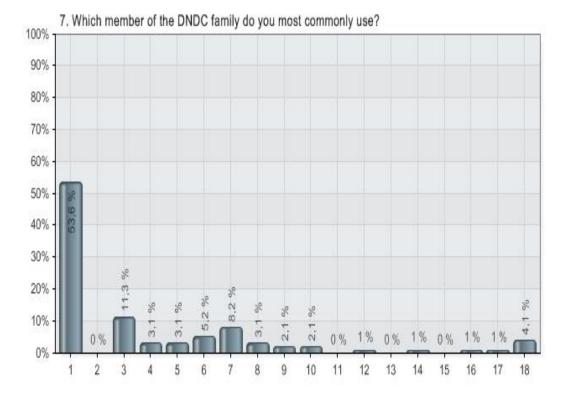

| YEAR  |                     | Model versions |           |  |
|-------|---------------------|----------------|-----------|--|
| 1992  | DNDC                |                |           |  |
| ••••• |                     |                |           |  |
| 2000  | PnET-N-DNDC         |                |           |  |
|       |                     |                |           |  |
| 2002  | Wetland DNDC        | UK-DNDC        | Crop-DNDC |  |
|       |                     |                |           |  |
| 2004  | Forest DNDC         | NZ-DNDC        |           |  |
| 2005  | Forest DNDC Tropica | EFEM-DNDC      |           |  |
|       |                     |                |           |  |
| 2006  | BE-DNDC             |                |           |  |
|       |                     |                |           |  |
| 2008  | DNDC-Europe         | DNDC-Rice      |           |  |
| 2009  | Mobile-DNDC         |                |           |  |
| 2010  |                     |                |           |  |
| 2011  |                     | DNDC-CSW       |           |  |
| 2012  | Landscape-DNDC      | Manure DNDC    | NEST-DNDC |  |
|       |                     |                |           |  |

### 5. DNDC – Model tree

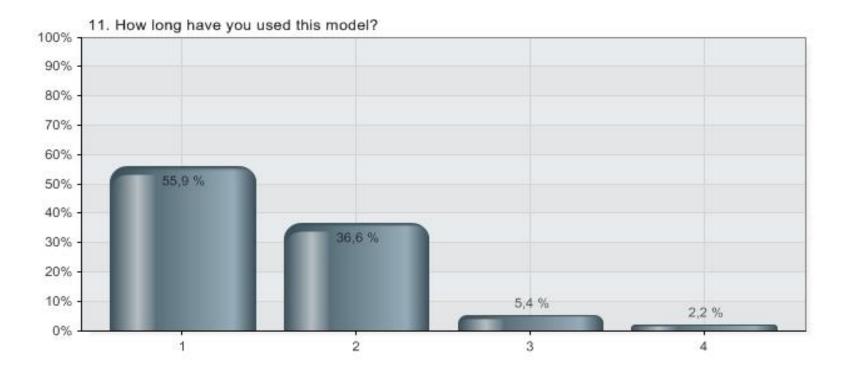



Schematic diagram of the DNDC extended family

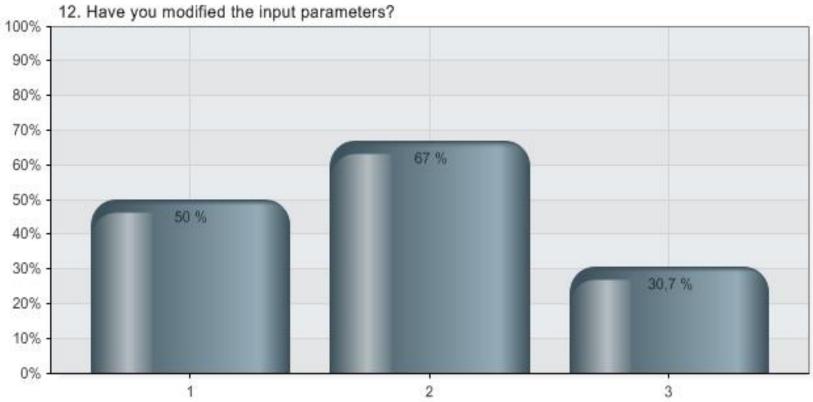
### 5. Pilot study – DNDC model performance




Measured and modelled total or annual N<sub>2</sub>O sorted by model version, extracted data from publications


### 5. Pilot study – DNDC model performance




Measured and modelled total or annual N<sub>2</sub>O sorted by model land use, extracted data from publications



| Alte | ernatives              | Percent |
|------|------------------------|---------|
| 1    | DNDC                   | 53,6 %  |
| 2    | PNET-N-DNDC            | 0,0 %   |
| 3    | CROP-DNDC              | 11,3 %  |
| 4    | WETLAND-DNDC           | 3,1 %   |
| 5    | FOREST-DNDC            | 3,1 %   |
| 6    | MANURE-DNDC            | 5,2 %   |
| 7    | RICE-DNDC              | 8,2 %   |
| 8    | NZ-DNDC                | 3,1 %   |
| 9    | UK-DNDC                | 2,1 %   |
| 10   | LANDSCAPE-DNDC         | 2,1 %   |
| 11   | BE-DNDC                | 0,0 %   |
| 12   | DNDC-EUROPE            | 1,0 %   |
| 13   | MOBILE-DNDC            | 0,0 %   |
| 14   | FOREST-DNDC-TROPICA    | 1,0 %   |
| 15   | EFEM-DNDC              | 0,0 %   |
| 16   | DNDC-CSW               | 1,0 %   |
| 17   | NEST-DNDC              | 1,0 %   |
| 18   | Other - please specify | 4,1 %   |



| Alternatives | Percent |
|--------------|---------|
| 1 < 1 year   | 55,9 %  |
| 2 1-5 years  | 36,6 %  |
| 3 5-10 years | 5,4 %   |
| 4 10+ years  | 2,2 %   |



| > | Have      | VOU | modified | the input  | parameters? |
|---|-----------|-----|----------|------------|-------------|
| L | I I G Y C | vou | mounieu  | LIC IIIDUL | valameterat |

| Alt | ernatives                                             | Percent |
|-----|-------------------------------------------------------|---------|
| 1   | Default crop growth                                   | 50,0 %  |
| 2   | Soil parameters for which there are default<br>values | 67,0 %  |
| 3   | Other? Please specify                                 | 30,7 %  |
| то  | tal                                                   |         |

GRAMP anticipated to bring more fundamental understanding of C-N interactions at different scales and improve the interaction between modellers, experimentalists and users, to synthesize solutions in the problem areas of model application and validation.

GRAMP will act as a global communication tool between research teams and model users, specifically interested in the measurement and modelling of GHG mitigation.

GRAMP will bring greater transparency in model development and application.

Using this web-platform, the modelling community along with end users can build well documented models and harmonise existing methodologies. 4. Website launch

# www.gramp.org.uk

# On 7th November 2013