Modeling Methane Emission in Littoral Zone of Miyun Water Reservoir with DNDC

Xuemeng Geng , Meng Yang, Guangchun Lei, School of Nature Conservation, Beijing Forestry University

Littoral zone as the hotspot of methane emission

Experienced seasonal dynamics of water table fluctuation and vegetation which are determining the conditions for production, oxidation and the net of CH_4 fluxes from wetland(Roulet et al.,1992; Moosavi and Crill, 1997).

93Tg CH₄yr⁻¹ form open-freshwater aquatic system 10Tg CH₄yr⁻¹ from plants in littoral zones. (<u>Bastviken, Tranvik et al. 2011</u>)

66–77% of the total CH_4 emission was released from the littoral zone where is accounting less than 25% of lake area.

(Juutinen, Alm et al. 2003)

Littoral zone as the hotspot of methane emission

- Increasing of filed monitoring and experiment validation for littoral zone or riparian zone
- BUT, hardly the model application has found for littoral zone of Water Reservoir or Lake
- Increasing number of water reservoirs result in hotter controversy on its clean(BP 2009, Gunkel 2009, Li and Lu 2012, Bridgham, Cadillo-Quiroz et al. 2013).

Littoral zone of Water Reservoir

- Over 80,000 large and small reservoirs were build in China till 2008
- **Modelling is emergent**, different Dam Water Level Management Plan(DWLMP) could directly lead to the variance of methane emission.
- If succeed, provide **professional advices** in DWLMP to make truly clean operation.

Beijing Miyun Reservoir (40 $^{\circ}$ 29'N, 116 $^{\circ}$ 50'E)

The maximum water area:188 km²

Average air temperature: 10.5° C

Ice-free Period: April to November

Annual average precipitation:600mm, 80%

from Jul. to Aug.

Water level change: 1-5 meters

Age: 60Yrs

Beijing Miyun Reservoir (40 $^{\circ}$ 29'N, 116 $^{\circ}$ 50'E)

- South-to-North Diversion Project in 2014
- Water level rising of 10-15m
- and **new** littoral zone and riparian wetland

The deep water show the open-water area and the light blue indicate the openwater area after re-impound

To figure out which parts or whether the whole littoral zone is suitable for methane emission modelling by Wetland-DNDC.

•Sampling design. WL: water level. The sites are grouped at different elevations. DW: deep water site; SW: shallow water site; SF: seasonal flooded site. 1, 2 and 3 are different vegetation types.

Model Parameter inputs

- Daily precipitation and average air temperature. (Weather Station
- Daily water level (Website of National Hydrologic Information)
- Soil property and vegetation data (field data)
- Some data in reference values

site	soil floor	texture	рН	SOC kgC/kg	BD g/cm3	Porosity
A1	MF	Loamy sand	7.9	0.013	1.7	0.36
A2	MF	Clay	7.86	0.014	1.01	0.771
A3	MF	Sand	7.9	0.013	1.7	0.36
B1	MF	Silt loam	8.04	0.006	1.33	0.498
B2	MF	Sandy loam	8.11	0.009	1.31	0.497
B3	MF	Clay loam	8.05	0.007	1.19	0.549
C1	MF	Sandy loam	8.08	0.006	1.45	0.452
C2	MF	Sandy loam	7.96	0.007	1.43	0.462
C3	MF	Silt loam	8	0.007	1.36	0.488

A1-Trapa bicornis

A2-Typha angustifolia

B1-Scirpus planiculmis

B3-Polygonum orientale

C1-Cirsium setosum

Condition	Water depth Fluctuation	Vegetation Type	Species	No.
DW		Hydrophytes	Trapa bicornis + Myriophyllum verticillatum	A1
	80-180cm		Typha angustifolia	A2
			(blank)	A3
SW		Hygrophytes	Scirpus planiculmis	B1
	0-120cm		Bidens pilosa	B2
			Polygonum lapathifolium	B3
SF			Cirsium setosum	C1
	-40-60cm	Mesophytes	Hemarthria altissima	C2
			Polygonum lapathifolium	C3

Field data

- Chamber Technique Standard
- Taken on May26-28th, June 30th–July2nd, August5-10th, September 5-9th, Octorber10-12th in

2012. The observation in July was interrupted by the rainstorm and delayed to August.

Method

-345

Five periods were set according to the hydrological pattern as Flooding period, Peak time and Recession period.

 > the modeled and observed CH4 fluxes consistent in temporal pattern
 Increase during the flooding period

Then, raised to peak

And a decline at the recession time

The value of R² ranged from 0.63-0.84 with significant correlation at three conditions. **However,** the overestimation appears, especially at deep water site where needed improvements in Wetland-DNDC model (Zhang, Li et al.2002, Zhang, Sachs et al.2012)

> Agreement in plant-specific plots

As the modeled and observed CH4 fluxes

- Superior in emergent aquatic plant(A2) and other studies have showed the same results(Hirota, Tang et al.2004, Duan, Wang et al.2005, Bergström, Mäkelä et al.2007).
- No difference among other emergent plants(B2,B3,C1,C2), possibly because of the close contribution of photosynthesis to the methanogenesis(Dorodnikov, Knorr et al. 2011)

The observed results showed the significant negative relationship between DO and CH_4 flux(DW:

n=72, p<0.01; SW: n=72, p<0.01; SF: n=24, p<0.01)

Higher DO in sites, lower observed results but now higher overestimated results in the model.

Considering CH₄ oxidation in water layer in Wetland-DNDC

Reeburgh(2007) has pointed out that the anaerobic oxidation is a major consuming way of CH_4 in marine. However, DO allowance may vary with habitat change (Knittel and Boetius 2009, Chowdhury and Dick 2013).

The DO% in SF only measured in the peak time

Whereas, the discrepancy between observed and simulated value for C3.

The model failed to simulate the increase of CH4 emission where the plant decaying after flooding.

The observation showed that the high emission in growing season is not only caused by high biomass but influenced by high metabolic rate of vegetation and agreed with other studies (Duan, Wang et al. 2006, Enrica, Rossano et al. 2010).

• Wetland-DNDC model is confident in simulating methane emission with the agreement of spatial and temporal pattern at the littoral zone of water reservoir.

- Water level change and vegetation are important parameters in Wetland-DNDC.
 Besides, they are also challenges for modelling as they played the mutual effects on methane production, transportation and oxidation.
- To the extent of whole reservoir, further study should pay more attention on modeling CH₄ emission from open-water area to estimate the total emission under different DWLMP conditions.

Acknowledgement

My supervisor Prof. Lei Guangchun

Yang Meng, Lv Cai, Zhu Yi, Dr. Zhou Yan and other staffs of our research group

Dr. Ouyang Yan from Institute of Geographic Sciences and Natural Resources Research, CAS

Thanks for your Listening!

geng.xuemeng@gmail.com

京P:1A930

Group Photo During GHG Field Work in Miyun Reservoir