

An attempt to select the best management practice using the DNDC model

Xunhua Zheng, Chunyan Liu, Feng Cui, Kai Wang (LAPC, Institute of Atmospheric Physics, CAS)

Conference of Global DNDC Network, September 15-17, 2013, Beijing

Corresponding to: xunhua.zheng@post.iap.ac.cn

GHGs emissions linked with other services of an agricultural ecosystem

The case study field site

Soil & climate

Туре	Alluvial soil
рН (Н ₂ О)	8.7
SOC	1.13%
TN	0.11%
Texture	Silt clay
Climate	Monsoon
Precipitation	580 mm
Mean temp.	14.4 °C

- Residues retention: ① full; ② zero
- Combined N & Irrigation practices: ① conventional (flood; 430 kg N); ② improved (sprinkle, -30% water; -16% N)
- **N addition rates:** 7 gradients (zero to 850)
- Nitrif. inhibitors: ① control (urea); ② DCD; ③ DMPP

Field measurements

Eddy covariance

Automatic chamber: N₂O, CH₄, NO fluxes

- Manual chambers: N₂O, CH₄, NO fluxes
- Eddy covariance: CO₂ (NEE) fluxes
- **Micrometeor. method:** NH₃ fluxes
- > Other variables:

Meteor. factors, soil temp. & moist., yields, biomass, DOC, NH_4^+ , NO_3^-

Manure chambers

Automatic chambers

> Effects of crop residues retention:

Full retention of aboveground residues (8.1 ton C ha⁻¹ yr⁻¹); Zero retention of aboveground residues: (0 ton C ha⁻¹ yr⁻¹)

Full vs. Zero retention:

- **Yields:** + **3**% (not significant)
- Maize-season N_2O : + 58% (p < 0.01)
- NO emission: + 13% (not significant)

EF_ds (residue-N vs. chemical-N):

- N₂O: 0.75% vs. 0.69%;
- NO: 0.15% vs. 0.56%

(Liu et al., 2011, AGEE)

> Effects of improved water and N practices:

Conventional practices: flooding 380-500mm; 430 kg N; Improved practices: sprinkling –30% water; –16% N)

- Improved vs. Conventional practices:
- **Yields:** + **4**-**6**% (p < 0.05)
- N_2O emission: 7% (p < 0.05)
- **NO emission: 29%** (p < 0.01)

(Liu et al., 2011, AGEE)

Main results from field measurements (3)

Effects of N gradients:

- yields: Increase stopped at
 > 600 kg N ha⁻¹ yr⁻¹
- N₂O emission: Linearly increased (p < 0.001)
- annual CH₄ uptake: Slightly stimulated (p < 0.05)
- annual NO emission: Linearly increased (p < 0.001)
- N leaching: •

(Liu et al., 2012, Biogeosciences)

Effects of nitrification inhibitors (vs. control):

- annual yield:
 - + 6-9% (not significant)
- annual NUE:

Increased from 33% to ~52%

- annual N₂O emission:
 - 35~38% (p < 0.05)
- NH₃ volatilization:

(Liu et al., 2013, Biogeosciences)

DNDC95 (a biogeochemical model)

- Biomass
- Yields
- NEE fluxes
 △SOC
- Net CO₂ emis.
- CH₄ fluxes
- N₂O fluxes
- NO fluxes
- NH₃ fluxes
- N leaching

Original: $\Delta SOC = NECB = C_{end} - C_{ini}$ **Modified:** $\Delta SOC = \Delta HC + \Delta DOC + \Delta SMC$

Management change:

- Long-term change ($\geq 10 \text{ yr}$) $\triangle \text{SOC} \approx \text{NECB}$
- Short-term change (< 10 yr):
 ΔSOC ≈ 162.8 Ln (NECB) 268.9

(Cui et al., 2013, Biogeosciences Discussions)

Simulated residue-to-SOC 0.18 Conversion rates conversion rates: 0.15 0.12 $11\% \pm 3\%$ (2SD, 20-yr mean) 0.09 **Measured residue** –to-SOC 0.06 0.03 conversion rates : 5 0 10 Northern China: $11\% \pm 2\%$ (2SD) Years [Huang et al. (2007) and ref. therein]

Global dry lands: 6 - 31% (mean: 15%)

(Cui et al., 2013, Biogeosciences Discussions)

15

20

DNDC validation (Biomass & yields)

DNDC validation (NH₃)

Daily NH₃ fluxes following a fertilization event

(Cui et al., 2013, Biogeosciences Discussions)

NECB
$$\approx \Delta SOC$$

 $\approx - NEE - C_{harv.}$
 $CO_2 = - \Delta SOC$
 $\approx (NEE + C_{harv.})/12 \times 44$

Annual yields $(C_{harv}, ton C ha^{-1} yr^{-1})$: Observed: 5.7 ± 0.2 Simulated: 5.8 Annual net CO₂ emis. (ton CO₂ ha⁻¹ yr⁻¹): Observed: -4.3 Simulated: -5.0 Cui et al., 2013, Biogeosciences Discussions)

DNDC validation (CH₄ uptake)

DNDC validation (N₂O emission)

DNDC validation (NO emission)

Implication: Applying N at a higher rate may stimulates more NH₃ volatilization than leaching

(Liu et al., 2012, Biogeosciences; Cui et al., 2013, Biogeosciences Discussions)

DNDC simulation (Nitrification inhibitors)

Implication: Use of nitrification inhibitors is not a good practice to mitigate N₂O emission from croplands with calcareous soils

(Liu et al., 2013, Biogeosciences; Cui et al., 2013, Biogeosciences Discussions)

Screening: the scenario with the largest I value is the best under given constrains

(Adapted from Cui et al., 2013, Biogeosciences Discussions)

Scenario study based on DNDC simulation

20-year simulation for Withstraw & No-straw scenarios

Simulated results for 14 scenarios (as 20-year means)

Choosing potential mitigation options among a number of management scenarios

DNDC application: Looking for BMPs

a_1	891	\$ ton ⁻¹ C	Referred to market prices Wheat-maize
a_2	938	\$ ton ⁻¹ C	of wheat and maize cropping regime
b	7.00	$ ton ^{-1} CO_2 eq $	Referred to market price of carbon trade
С	5.02	\$ kg ⁻¹ N	Birch et al. 2010
d	25.78	\$ kg ⁻¹ N	Birch et al. 2010, Compton et al. 2011
е	1.92	\$ kg ⁻¹ N	van Grinsven et al. 2010, Dodds et al. 2009
f	1.33	\$ kg ⁻¹ N	Compton et al. 2011

(Modified from Cui et al., 2013, Biogeosciences Discussions)

The best management practice (BMP)

	Scenarios	WY	MY	NEGE	NH_3	NO	NL	N_2O	Ι	Technical
	IRRindex	2.87	3.79	-1.81	41	2.31	7	5.73	4190	limits for
Reducing	Imp1	2.62	3.19	-2.68	26	1.83	2	3.71	3963	
yields >5%→	N301	2.16	2.99	-1.78	41	1.50	7	3.36	3110	■ Irrigation
	Imp2	2.26	3.03	-1.52	56	1.75	22	4.13	2131	
	N366	2.28	3.11	-1.53	55	1.78	26	4.27	1976	
	DMPP	2.28	3.13	-2.06	126	0.93	21	3.14	1966	
	DCD	2.28	3.14	-1.98	113	0.95	30	3.33	1442	Retter
(current	NSI	2.24	3.06	0.87	80	1.38	43	2.45	679	
(ourion)	IRR300	2.26	3.04	-1.43	69	1.94	49	4.30	323	
practice)	NT	2.33	3.23	-2.06	51	1.95	60	4.33	-96	
Baseline →	ASI	2.28	3.14	-1.47	68	1.95	59	4.41	-225	
-	IRR500	2.29	3.16	-1.46	68	1.97	72	4.47	-1037	
	N459	2.28	3.14	-1.39	82	2.17	93	4.58	-2493	\mathbf{V}
	N559	2.28	3.14	-1.27	95	2.39	126	4.83	-4693	worse
		-	-	-			-	-		

The identified BMP (Imp2): ① full residues retention;
② sprinkler, 25% less water; ③ urea alone, 16% less N;
④ current cultivar, other management and schedules. (Cui et al., 2013, Biogeosciences Discussions)

- A case study was carried out, which combined multi-year, multi-factorial field experiments and model simulation.
- A price-based index was defined as the criteria to assess the biogeochemical effects of management alternatives, in terms of GHGs emissions, gaseous pollutants releases, N leaching and crop growth (yields), and thereby to identify potential BMPs.
- Nitrification inhibitors significantly reduced N₂O emission, enhanced NUE and crop yields; however they most likely stimulated intensive NH₃ volatilization from a calcareous soil.

- The identified potential best management practice (BMP) for maize-wheat cultivation on a irrigated calcareous soil with a silt clay texture has features of:
 ① full residues retention;
 - **②** sprinkler of 25% less water than 380-550 mm yr⁻¹;
 - **③** using urea alone < 16% N than 430 kg N ha⁻¹ yr⁻¹;
 - ④ adopting the crop cultivar, other
 management and schedules being applied
 currently at the study site.

Thanks for your attention !

LAPC, IAP-CAS